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Horadam [4] has pointed out that generalizations of the Fibonacci sequence { F, } fall in either of two cate-
gories: (1) an alteration of the recurrence relation of the sequence, and (2) an alteration of the first two terms of the
sequence. He further states that these two techniques may be combined, and in this paperwe follow this suggestion
by considering the sequence J U, } defined as follows: Let Up, Uy be arbitrary integers, not both zero; let s
be non-zero integers, and let

(1) U, =rU,_;1+sU, 5, n>2

This sequence has been considered by Buschman [2], Horadam [5], and Raab [7]. If r=s =17, the sequence
U, } becomes the sequence considered by Horadam in [4]. Quite clearly, if r=s=17 and U,=0,U;=1, then
U, { becomes the Fibonacci sequence { F,¢.

King [6], Bicknell and Hoggatt [1], and others have used the @-matrix to generate, so to speak, the Fibonacci
sequetice where
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It is routine to show that
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U, } we define the R-matrix,

In order to generate the sequence
= S
4) R=1%¢

It is also useful to define what we call the sequence { K,,(» as the special case of { U, } where Up=Kp=10,
Uy;=Kq=1, and K,=rK,_7+sK,_2. With these stipulations, it follows that

(5) Upn _lrs n-11" Uy _ Kn sKnp- U1
Up-1 10 | Vo Kp-1 sKn-
In (5) if we replace n by n+p, p >0, then
N/ ntp+1{ Uy _-rs n=1r 1Pl Uy
(6) [UHZ;':,] [; 2] [Uo] - [ 70 [ 70} { Ug
‘ Kn SK,,_; Up+7
Kn-1 sKp-2 Up

Now by equating corresponding elements in (6), we obtain

(7) Un+p K Up+1+SKn_7U
Similarly, it may be shown that for any p,g suchthat 0<g<n-—17 and 0<g <p,

[]

(8) Upntp = KntqUp-g+1+5Kn+g-1Up—q .

Using (5), (7) and (8) we derive a number of vector-matrix relations which are listed here since they will be used in
the sequel.
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We have

U, r—s )1 Uy - Kpn —sKp_q U
(9) =170 [ } = , ,
—Up-q -Uo ~Kn-1 sKn-2 1L —Uo
U1 1 TO£1V Up
(10) U, 17} 25 r [iU;
(11) [ Un+p _ Kp tSKp_j
+U, g 7
(12) Up 1 =} Kp 25Kp-g
+Upp 0 7
U, g 7
(13) N
[Un+p ] [Skn Kp+1

(14)

05" T sKpo sKpt
(15) [7 l’] = [ Kﬂ:—I Kﬂ .

When considering generalizations of the Fibonacci sequence, one of the natural guestions to investigate is which, if
any, of the Fibonacci identities may be generalized to identities for the generalized sequence. In many cases identi-
ties can be modified to generalized identities which, as special cases, reduce to Fibonacci identities. For example,
Horadam has shown [4] that the well known Fibonacci identity,
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(16) FZ—Fp_1Fpes = (=1)"7,
becomes
(17) HZ = HpiHpeg = (=1 (H2 ~ H,Hy~ HY)

where Hgp, H; are arbitrary integers and
Hyp=Hp g+ Hpo.

Other well known Fibonacci identities have been generalized in [4] also.

in [5], Horadam has given the generalization of (16) for the I U, } sequences as well as the generalization of
several other identities. We show here a derivation and proof of these generalizations using appropriate matrices and
vectors. This method not only provides a very clear proof, but it also derives the generalized expression. This latter
task is not always easy if we have to rely on “guessing” what the generalized form should be.

If we consider the following vector dot product and use {5) and (10}, we have

7yn-1 o -1 Uy -
[U7'U0][;0] [—s r} [——3’1]
(~s)" [, Uo]i: o ] [_12,01 ] ,
[r7 [04] =07
s 0 -5 r g —s

Now if we multiply out these three matrices, we get
(18) UF = UpetUpey = (=) (U2 1010 - sUZ) .

i}

U
U,?—- Up-iUps1 = [Unl Un"7] : [:—UZ-H]

[}

since

it Us=1, Up=0, wehave
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(19) Klg_ Kn-1Kn+1 = ()7 ,

an expression independent of ~. Thus, we conclude that if s=17, the { K, } sequence satisfies (16) without alter-
ation regardless of what value r assumes.

The method above may be used to show that
(20) UZ = Up-gqUnsg = (—s)"K2UZ = 1U1Up-sUE),
21 UntpUntq = UnUniptq = (—5)" Ky Kg(UZF — rU1Up— sUZ).

These identities also appear in [5], but the method used there to derive them is quite different. Since the proof of

(20) and (21) is more involved than the proof of (18), we give the proof of (20) here. Using (12), (13), and then
(15), we have,

U
U;r?_ Un—q Un+g = [Un, Un+q] [_U”n_q]

0s il 71 sk, Ky —sKg- r—s ™9 1]
[Uo,U1][7r] [a K‘,’,’][aq 7 7][—7 a] [——U’o]
n . n-q U
Kq[Uo:Uﬂ[gi] [—rl 0s] [—Jo]
q
(—s}”'qKq[Uo,Uﬂ[l; f] [_UJO]

K sK, U
= (=s)" UK [Up U SRg-1 q 7
( 5} q[ a 7][ Kq Kq+7 —UO

If we multiply these three matrices, rearrange terms properly and observe that

[0}

Kq+7 —sK, -1 = I'Kq ,
we have 5
UZ = UpgUpsg = (~s)"TKE[UF = 1U U —sUG]T
Again if welet Ug=0, U;=1, (20) becomes
(22) KZ— Kp-gKn+q = (—$)"9 ,
an expression independent of .
Another well known Fibonacci identity is
(23) FRi1+F7 = Faner -
Matrix methods are again especially helpful in not only proving a generalization of (23) but in discovering what this
generalization ought to be.
Using (10) and (14), we have

Up+1 rs1'rr sN'T Uy
U5+7+SU,€= [Un+1,SUn][ Jn ] = [U],SUO][, 0] [ 0] UO

2n U
= /U1,$U0-][r7 5] [Z’] = [UIISUOJ[ 5n+1] = UrUzn+1 +sUgUzq .-
Hence, we have 0 2n

(24) U/?+7 +5U§ = UrlUzp+y +sUgUzp
which is again an expression independent of r. For the { K, } sequence, this becomes
(25) K211 +5KZ2 = Kopsr .

As an alternate way of writing the right side of (24), we observe in the proof that

R R T
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Substituting this expression into the above proof, we see that we may write
(26) U1U2,,+>7 + .S‘UgUzn = n-q+7Un+q+1 +SUn.q Un+q .

As a further exercise in identities we see that if we replace n by n+ 7 in (8), let p = n, and U; = K;, we have
(27) K2n+1 = Kn+q+7Kn-qr+7 +.$'Kn+qKn_q .

We may also obtain (27) as a special case of (26) by simply replacing U; by K;. However, (8) cannot be obtained
from (27).
The Fibonacei identity

(28) FReg=FRq = Fon .,
generalizes to
(29) U,?.H -—52U,€_7 = rfUyUs, +sUgUsp—1) .

We may prove (29) by using (24) or by using matrices as follows:
U2y —s2U2 1 = U2, +sUR— (sUZ+5s2U2.,)

[U1,on]!;r, 5]2”—2[[’, 3_2“‘[(7) ?]][ Z; j
rlUy, suoj[’, g]'zn_z[ re ‘[5;] = HU1Us, +5UgUszp-1).

Again, the identities (24) and (29} are found in [5] and perhaps elsewhere in the literature, although the alternate
way of expressing the right side of (24) which appears in (26) is apparently not known.

The method used in the proof of (29} may be generalized to find and prove numercus other identities for the
sequence { u, } As an illustration, we note that in the proof of (29) we needed and used the fact that

(el -s[09-[7¢] -

Using this as a clue, we can show, for example, that
rs 4_,, rs 3__52'70 =l s
10 10 01 104

U1+ 5UR s — HUpioUpsy #5UpsqUp) — s2(UZ +5U247)

2n-2f 4 3
- rs rs ros 2{10 U}
= [Uq,sUg] [, 0] [L, 0] —-l’[7 ol —°% [0 1 ][UL] ,

we concfude in the manner used above that

Therefore, since

(29) U,?+2+SU,€+1 —I’Un+2Un+1 -—I‘SUn+1U,-, —5211,2—5‘31/,?4.1 = /‘S(UjUzn +SUOU2,«,_1}.

The use of matrices adapts itself very nicely for generalizing some of the identities involving sums of Fibonacci
numbers. One such identity is

n
(30) ) L Fi= Fpe2—1 .
=1

I order to generalize this identity for the sequence { U, % , we first prove that

1
(31) $ 20 PR = Kpug—r"T
=1
The method of derivation and proof is a generalization of a method used by Hoggatt and Ruggles [3]. We first ob-
serve that for the matrix A as defined by (4) and the matrix
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- 170
- [59]
(32) Ryt * Ty = (1 TR gt 2R2 4 g1 L ROYR _ ) |

Furthermore, it is easy to show that

RZ_rR—sl =0,
or
RIR—rl) = sl .
Hence, we see that

(R—rt)" =5sTR.
If we multiply both sides of (32) by s~TB and then subtract 77/ from both sides, we obtain
(33) TR+ 2R2 4 g R g = ~T(pNt2 _np2)

Writing out the matrices in (33), we have
n-1| K, sk, |, on-2) Kk, sk | L n-3) K sko | 4] Kn SKne1 T L [ Knsr sKn
r [K1 sKO] r K, sk, | 7" K, sK, "N K, sKp-2 Kp sKp-1

= 1| Knt3 sKns2 | _ n| K3 sK2
Knt+2 sKn+1 K2 sKy |}

Now equating elements in the upper right corner of this matrix equation, we obtain (recall that Ko=r/) ,

st Ky 451" 2 Ko+ et 51K g #5Ky = Kpao—r™ T,
which is (31).
In order to generalize this identity for arbitrary Ug, Uy, we use {7) with p =0 to get
n . n
D I/EEDY r"2(U K +sUgKi_q)
=1 =1

n n
Uyqs Z I’n_i/(,"i"S2U0 Z I'n-IK,'_j

=1 i=1
\
n n+1 2
n-ip |, SUo n-(i-1) . $“Up
e e
i=1 =2

Now we use (31) on these two sums to obtain

+1 '
~ e \ o (5 petiilg U0 K = Uplhpsz -1+ Ky = )
Ul s 3 7K /"—,— > i1 | == Kn = UglKps2 =1 7 (Kn+2
=1 =2

s2Upk,,
Ty

s2UpK,

sU
= U7K,,+2—-U7r"+7+7q—(rK,,+,+sK,,—r"+7}— p

= UsKpso+sUgKpsr —r" U= sr"Up = Upep—r"Us

Hence we find that the generalized form of (30) is
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(34) § Z I’n—iU,' = Un+2—l'”U2

=7

~a e

By factoring the expression
‘/R2}n+7 _ (I’Z}n+7/

and proceeding as above, we find

n
35) S22 =5) 3 12 Kgp = (12 = 5)Kapsp# 15K 24 — 1273
=1
and
n .
(36) s(2r? —s) E P2l o 1 = (12 = $s)Kopeg + 15K gy — r272 4+ 520
=1

If we use (35) and (36) in the same manner as we did in proving (34), we get

n
(37) s(2r? —s) E r2(n=i) Us; = (r2— SWopi2+15Usp41 +52,2n Ug- r2n+2U2
=1
n = .
(38) s(2r2=5) 3 P20y 1 = (12— $JUzpeq + 15Uz + 127 (U1 — 1U2) .
=1

It is quite likely that many other well known identities can be generalized in ways similar to those usecl above. It is
not our purpose to provide an exhaustive list, but to illustrate the method and in particular the usefulness of the A—
matrix.
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