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H-249 Proposed by F. D. Parker, St Lawrence University, Canton, New York. 

Find an explicit formula for the coefficients of the Maclaurin series for 
h0 + b1x + - + bkx

k 

1 + ox + $x2 

H-250 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that if 
A(n)Fn+1 +B(n)Fn = CM (n = 0, 1,2, -), 

where the Fn are the Fibonacci numbers and A(n), Bin), C(n) are polynomials, then 
AM = BM - CM = 0. 

H-251 Proposed by P. Bruckman, University of Illinois at Chicago, Chicago, Illinois. 

Prove the identity: 

~ La 7 -7-
n-0 IMnl2 n=0 M" ' 

where 
Mn = (1-x)(1-x2)-(1-xn), Mo = 1 

SOLUTIONS 
SOME SUM 

H-219 Proposed by Paul Bruckman, University of Illinois, Urbana, Illinois. 

Prove the identity 
n 

'-«"(j)E(;)'^-f5f-S(l!) 
1=0 i=0 

where 
x(x- 1)(x-2)-(x-i+1) 

i! 
(x) not necessarily an integer. 
Solution and generalization by H. Gould, West Virginia University, Morgantown, West Virginia. 

We shall obtain the slightly more general formula 
185 
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u) <-»nixn) E <-Dk (:)<!+<>k j E t - i [t V -
k=0 k=0^ ' 

Examination of Bruckman's formula suggests that the formula can be found fromthe partial fraction expansion 

<2> ±<-i>k{l)^T=lx+
n
n)~1 -

k-0 
which is formula (1.41) in my book, Combinatorial Identities (a standardized set of tables listing 500 binomial coef-
ficient summations, revised edition, published by the author, Morgan town, W. Va., 1972). This is a familiar and well-
known formula* Besides (2) we shall need below the formula 

(7) =M/(* -" ) . 
the binomial theorem, and simple operations on series. 

We make a straightforward attack on the left-hand side of (1) and find 

t (-»k(: y+»k j5 i= i <-»k{i y^h{k,y 
k=0 k=0 ' j=0 

n t n n n-j 

j=0 k=j j=0 k=0 ' 

i=0 k=0 

j=0 

n 

j=0 j=0 

Therefore, 

-7 

k=0 j=0 

-[Kn)["-
X

n-
1Y'£<-1>l['"X«--1r')<H ~ (X)^>n[Xn)'1t(^^H[n-,y-' 

J=0 j=0 

•±[ .:,)<" •t[;)>1 • 
M j=o 

as desired to show. Bruckman's formula (1) occurs when t = 1, and formula (2) occurs when t = 0. Thus (2) is not 
only used to prove (1) but is a special case of it. 

We may rewrite (1) in the form 

k=0 j=0 
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Recall the simple, well known Inversion pair 
n 

fM= E (-Vk[nk)9(k) 
k=0 

if and only if 
n 

ff(">= E (-1>k[nk)f(k) , 
k=0 

and we see that (3) inverts to give 

k=0 j=0 * 
Now, however, the power series expansion of (1 + t)n is unique, so that the coefficient of tJ in (4) must be precisely 

, so that we have evidently proved 

-/ 
J 

n 

«> n i E U U x - n _ n 
x-k \ J 

k=j 

for all real x. This formula is actually just a special case of (4.1) in Combinatorial Identities which occurs when we 
setz = n there and replacex byx - /. However (5) is an interesting way to express this case. 

Many other interesting sums can be found from (1). Thus by taking r derivatives we have at once the identity 

(6) [X
n)t(-i>n-k("k)[

k
r)u+t)k-r^k = ± ( ; ) ( ; )** - . 

k=r k=r 

which will express other relations in Combinatorial Identities in different ways. For t = 0, Eq. (6) yields nothing 
more than a variant of (2) again. 

[See also Paul Bruckman, Problem H-219, The Fibonacci Quarterly, Vol. 11, No. 2 (April 1973), p. 185.] 

Also solved by G. Lord, P. Tracy, L Carlitz, and the Proposer. 

ON 0. 

H-220 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Show that 

~ kk A , / - y 2r 

Z^j (2)k+1 £»•** (z)r+1(az)r+i 

where 

Solution by the Proposer. 

It is well known that 

where 

k=0 r=0 

(z)n = (1 - z)(1 - qz) »• (1 - q"-1z), (z)0 = 1 

oo 

Uh^1 = *~t \-k+rrY • 
r=0 

f k+r 1 = Wk+r = T k+r 1 
L r J' (q)k(q)r ~ |_ k J' 

Thus 



188 ADVANCED PROBLEMS AND SOLUTIONS [APR. 

k=0 k=0 r=0 n=0 k=0 ' ' 

On the other hand, 

A?=0 2r+s+j=n ' ' n=0 k=0 r=0 J ' " 

Hence it remains to show that 

r-=0 

or what is the same thing 
k 

r=0 

This can be proved rapidly as follows. We recall that 
r=0 

e recall that 
n 

(l+zHl+qzl-U+q"'1!) = J^ \ " ] qMr"1>zr . 
r=0 

Then 
m+n m n 
£ j " m+n j qY2k(k-1)zk = J- \™y2r(r-1)(qnz)r ^ Y n j ^ ^ / ^ 

*=0 L J r^0 ' s=0 $ 

The coefficient of zn on the right is equal to 
n 

Y* \ m\ \ "~\ qV2r(r~1)+nr+1/2s(s~1} = V i m 1 I * " 1 Q%r(r-1)+nr+%(n-r)(n-r-1) 

r+s=n " " " r=0 • •• ~ 

r=0 
This proves (*). 

CONGRUENCE FOR Fn AND Ln 

H-221 Proposed by L Carlitz, Duke University, Durham, North Carolina. 

Let/? "=2m + 1 be an odd prime,/? £5. Show that Mm is even then 

Fm=0 (modp) [I | ) = +1 

Fm+1 ^0 (modp) ( | ) = - / 
If m is odd then 

Lm=0 (modp) (( £ ) = +1 

Lm+1=0(modp) [ ( £ ) = - / 
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where ( - ) is the Legendre symbol. 

Solution by the Proposer. 

Put 
r,n nil 

tn a__p , Ln a +p , 

wherea + jS = /, a$= - I 
Recall the identities 

,*v i 1 -S 5FmFm+l (m e v e n ) 

U L 2 m + 1 ~ 1 - j LmLm+f foQdd) 
Since Lp^1 (modpi it follows that 

/ Fm^m+1 = 0 (modp) (m even) 
\LmLn {LmLm+1 = 0 (modp) (m odd) . 

1. Let/?? be even. Since (Fm, Fm+1)= 7, it follows that either Fm or Fm+1 s o (modp) but not both. Since 

and 

we must show that 

f m = 0 (modp) Z a2m = / fow/p; 

Fm+1 = 0 f/mH/pJ 2 a2m+2 - - / f/wotfpj, 

j a ^ s / t o « / / i ; ( ( f ) - * / 

I ap+1 ^ -7 (modp) ( | ) = - / ] 

Now when f - ) =-/-/, p = Tm,
/ where TT, TT' are primes in the quadratic field Q(s/5). Since 

N(-n) = N(it') = p 
and a is a unit of the field we have 

aP~1 s 1M, ap~1 = 1M 

and therefore ap~1 = 1 (mod p). 

On the other hand if f - ] = - / , p remains a prime in (2(\f5). Since 
P oP _- ( Ltf. )P ,1 + 5**-'^ B ±Ji (modpK 

it is clear that aP =fi (modp), so that ap+1 =a|3 = - / (modp). 
2. Now Set m be odd. Since (Lm, Lm+i) = 1, it follows from (*) that either Lm or Lm+i = 0 (modp) but not both. 

Since . o„, 
Lm = 0 (modp) t a

2m ^ 1 (modp) 
and 

Lm+1 = 0 rmo£/p>/ 2 a 2 m * 2 = - / (modp), 

it suffices to show that 

j aT1
 s / foic^ ( ( | ) = +1' 

\ apH^-1 (modp) ( ( I ) = -7 

However the proof of these congruences for m even applies also when m is odd. 
This completes the proof. 
REMARK. We have incidentally proved that 

nP~1 = 1 (mnH ni I f ^ a?"' s / r/ii(M/p; (( | - ) = +7 

I apH = 7 friMM/^ j ( | ) = - / ) . 
Trie first of these congruences is immediate but the second is less obvious. 

******* 


