REFERENCES

1. H. W. Gould, "Generating Functions for Products of Powers of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 1, No. 2, April, 1963, pp. 1-16.
2. V. E. Hoggatt, Jr., and Janet Crump Anaya, "A Primer for the Fibonacci Numbers-Part XI: Multisection Generating Functions for the Columns of Pascal's Triangle," The Fibonacci Quarterly, Vol. 11, No. 1, Feb. 1973, pp. 85-90, 104.

家

A FORMULA FOR $A_{n}^{2}(x)$

PAUL S. BRUCKMAN

University of Illinois, Chicago, Illinois 60680
This paper is a follow-up of [1], which dealt with certain combinatorial coefficients denoted by the symbol $A_{n}(x)$. We begin by recalling the definition of $A_{n}(x)$, which was given in [1]:

$$
\begin{equation*}
(1-u)^{-1}(1+u)^{x}=\sum_{n=0}^{\infty} A_{n}(x) u^{n} ; \quad \text { therefore, } \quad A_{n}(x)=\sum_{i=0}^{n}\binom{x}{i} \tag{1}
\end{equation*}
$$

which is a polynomial in x. In [1], the writer indicated that he had found the first few terms in the combinatorial expansion for $A_{n}^{2}(x)$, but was unable to obtain the general expansion. Formula (78) in [1] gave the first few terms of the expression, derived by direct expansion:

$$
\begin{equation*}
A_{n}^{2}(x)=\binom{2 n}{n}\left\{\binom{x}{2 n}+1 / 2(n+2)\binom{x}{2 n-1}+\left(\frac{n^{3}+2 n^{2}+3 n-4}{8 n-4}\right)\binom{x}{2 n-2}+\ldots\right\} \tag{2}
\end{equation*}
$$

The problem of obtaining the general term of the polynomial $A_{n}^{2}(x)$ has now been resolved. However, the expression is in the form of an iterated summation, which is indicated below:

$$
\begin{equation*}
A_{n}^{2}(x)=\sum_{i=0}^{n} 3^{i}\binom{x}{i}+\sum_{i=n+1}^{2 n}\binom{x}{i} \sum_{j=i-n}^{n}\binom{i}{j} \sum_{k=0}^{j+n-i}\binom{j}{k} \quad(n=1,2,3, \ldots) \tag{3}
\end{equation*}
$$

Perhaps some interested reader can reduce this expression to a simpler one, involving only two (or possibly one) summation variables. If we denote the coefficient of $\binom{x}{i}$ as θ_{i}, relation (3) above yields the following values:

$$
\theta_{2 n}=\binom{2 n}{n} ; \quad \theta_{2 n-1}=\frac{(2 n-1)!}{n!n!} n(n+2) ; \quad \theta_{2 n-2}=\frac{(2 n-2)!}{n!(n-1)!} 1 / 2\left(n^{3}+2 n^{2}+3 n-4\right)
$$

(these last three values may be compared with those in (2));

$$
\theta_{2 n-3}=\frac{(2 n-3)}{n!(n-2)!} \frac{1}{6}\left(n^{4}+n^{3}+8 n^{2}+2 n-24\right) ;
$$

also, $\theta_{n+1}=3^{n+1}-2 \cdot 2^{n+1}+1^{n+1} ; \quad \theta_{n+2}=3^{n+2}-2 \cdot 2^{n+2+1^{n+2}}-(n+2)\left(2^{n+2}-1\right)+(n+2)^{2}$.
In attempting to discover the law of formation of θ_{i} for $i>n$, it is clear that increasing difficulty is encountered as one recedes from either end of the second (iterated) summation in the right member of (3). Possibly, θ_{i} may be concisely expressed in terms of a finite difference operator, but this approach has not yet been fully explored.
A proof of (3) follows. The proof hinges on a formula due to Riordan, indicated as formula (6.44) in [2]. This formula is as follows:

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n}{k}\binom{m+n-k}{m-k}\binom{x}{m+n-k}=\binom{x}{m}\binom{x}{n} \tag{4}
\end{equation*}
$$

A slightly more convenient form of (4) is obtained by the substitution $i=m+n-k$, also observing that the upper limit in (4) need only equal $\min (m, n)$, since subsequent terms vanish. Then (4) takes the following form:

$$
\begin{equation*}
\binom{x}{m}\binom{x}{n}=\sum_{i=m a x}(m, n)\binom{x}{i}\binom{i}{m}\binom{m}{i-n}=\sum_{i=m a x}(m, n)\binom{x}{i}\binom{i}{n}\binom{n}{i-m} . \tag{5}
\end{equation*}
$$

Now

$$
A_{n}^{2}(x)=\sum_{j=0}^{n}\binom{x}{j} \sum_{h=0}^{n}\binom{x}{h}=\sum_{j=0}^{n} \sum_{n=0}^{n} \sum_{i=\max (j, h)}^{j+h}\binom{x}{i}\binom{i}{j}\binom{j}{i-h}
$$

(applying the result in (5)),

$$
=\sum_{j=0}^{n} \sum_{i=j}^{j+n}\binom{x}{i}\binom{i}{j} \sum_{h=i-j}^{m}\binom{j}{i-h}
$$

where $m=\min (i, n)$. Now let $h=i-j+k$. Then

$$
A_{n}^{2}(x)=\sum_{j=0}^{n} \sum_{i=j}^{j+n}\binom{x}{i}\binom{i}{i} \sum_{k=0}^{m-i+j}\binom{j}{j-k}=\sum_{i=0}^{2 n}\binom{x}{i} \sum_{j=i-m}^{m}\binom{i}{j} \sum_{k=0}^{m-i+j}\binom{j}{k}
$$

Distinguishing between the cases where $i \leqslant n$ and $i>n$, this expression may be simplified as follows:

$$
\sum_{i=0}^{n}\binom{x}{i} \sum_{j=0}^{i}\binom{i}{j} \sum_{k=0}^{j}\binom{j}{k}+\sum_{i=n+1}^{2 n}\binom{x}{i} \sum_{j=i-n}^{n}\binom{i}{j} \sum_{k=0}^{n-i+j}\binom{j}{k}
$$

Comparing this with the right member of (3), we see that the only thing left to prove is that

$$
3^{i}=\sum_{j=0}^{i}\binom{i}{j} \sum_{k=0}^{j}\binom{j}{k} .
$$

But this is an easy consequence of the binomial theorem, applied twice, since

$$
\sum_{k=0}^{j}\binom{j}{k}=(1+1)^{j}=2^{j}, \quad \text { and } \quad \sum_{j=0}^{i}\binom{i}{i} 2^{j}=(1+2)^{i}=3^{i}
$$

Hence (3) is proved. Obviously, the expression for θ_{i} given by (3), for $i>n$, is not unique. By various substitutions and/or translations, a wide variety of expressions for θ : may be derived from the basic relationship in (3). For example, the following alternative formula is given, without proof:
(6)

$$
\sum_{j=[1 / 2(1+i)]}^{n}\binom{i}{j} \sum_{k=0}^{2 j-i}\binom{1+j}{k}=\sum_{j=2 i-2 n}^{i}\binom{i}{i} \sum_{k=i-n}^{j+n-i}\binom{j}{k}=\theta_{i}, \quad(i>n)
$$

(where $[u]$ represents the integral part of u).
Attempts by the writer to obtain a generating function for the $A_{n}^{2}(x)$'s, in closed form, were unsuccessful. Can anyone help?

REFERENCES

1. Paul S. Bruckman, "Some Generalizations Suggested by Gould's Systematic Treatment of Certain Binomial Identities," The Fibonacci Quarterly, Vol. 11, No. 3 (October 1973), pp. 225-240.
2. H. W. Gould, Combinatorial Identities, Morgantown, 1972, p. 57.

*

