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1. INTRODUCTION 

F2+F2+mmm + F2 
One way to easily establish the validity of 

~)-rr2-. - . , n 

is by use of a nice geometric argument as in Brother Alfred [1] . Thus by starting with two unit squares one can add a 
whirling array of squares (see Fig. 1) with Fibonacci number sides since the area as in Fig. 1 is 

5x8 = F^ + Fi + F% + Fi + F\ •2 _ We. 
More generally, the rectangle has area FnFn+<i. 
This result is classic, but a new twist was added by H. L Holden [2] . The centers of the outwardly spirally squares 

lie on two straight lines which are orthogonal. These two straight lines intersect in a point P, and the distances of the 
centers of the squares from P sequentially are proportional to the Lucas numbers. Holden also contains an extension 
to the generalized Fibonacci sequence with / / / = 1 and H2 = p with Hn+2 = Hn+i + Hn. This results in 

H1 + H2 + H3 + — + Hn = HnHn+] - Ho . 

In another paper, we will discuss the situation with inwindsng spirals. 

2. THE FIRST GENERALIZATION 
Our method here is different than that used by Holden [2 ] , but ours offers a neater way to get the centers of the 

squares, and we proceed principally by generating functions. (See Fig. 2.) We first discuss the geometry. 
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Figure 1 Figure 2 
Start out with a unit square and make x copies. Then above that, make* copies of x-x squares. It is not difficult 

to see that the edges are 1,x,x2+ 1,x3 + 2xf - , fn(x), where fn+2<x) = *fn+i(x> + fn(
xh which are the Fibonacci 

polynomials. 
If we consider the matrix 

as in Holden and V7 = (x, 11 V2=(-1,x), V3=(-x,-1), V4 = (1, -x) with 

then 
Theorem 1. 

To 1 1 

Vn+1 ~ Vn \_-1 0 J ' 

Pn = Pn-1 + Vnfn(x). 
*Fibonacci Scholar, Summer, 1974. 
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If oof. The proof proceeds in four parts. 
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n+2 N~" ^ n + 3 ~ H 
n̂ ^ V l f (' UK* ^n+1 = ^ n + <-*,- / ; / n + 1 P n + 2 - ^ n + 1 * (1,-*)f n+2 ^n+3 = ^n+2 * />, ^ n + 3 

These are the four critical turns in'the sequence of expanding the outward spiralling of squares. 
As a consequence of Theorem 1, one can prove 
Theorem 2. 

Proof. 

Assume 

Pn = PO+J2 VifiM • 
i=1 

Pi = (0.-1) + (x,1h1 = (x,0). 

n-~1 n 

Pn = Pn-1 + Vnfn = P0 + J2 Vifi+Vnfn = P0 + Y, V'f' 
i=1 1=1 

We are now ready to get on with the general theorem by means of generating functions. 

1 SOME NECESSARY IDENTITIES 
oo 

Ax 
Lemma 1. 

1-\2(x2+2) + \ 4
 n=0 

= £ f2nM\2n+1 

Lemma 2. 

Lemma 3. 

2n 

1-X2(x2 + 2) + \4 Z^0 

1 -\2(x2 + 2) + \ 4
 n=0 

Since these are straightforward, the proofs will be omitted. 
We may now give a generating function for the ̂ -components of the corners, where Pnx denotes the x-coordinate 

of the point Pn. 
Theorem 3. 

Proof. Fron 
1=0 ''* 1+\2(x2 + 2) + \ 4 f~] 

i=1 
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J2 P^X" = (Q+xf-jX- f2X2 -xf3X3 +f4X4 +xf5X5 + .~)/(l -X) 
n=0 

= fx(fj\- f3X3 + %X5 - >») - (f2X2 - f4X4 + fe*6- -)J/(1 - Xj 
= Xx+x(X + X3) 1_ 

1 + X2(x2 + 2) + X4 1~X 

Since Pn and Pn-i are opposite corners of square r\f the ̂ -coordinates of the centers Cn are given by 

(Pn,x+Pn~1,x>/2 = Cn,x . 

V xn(P +p i 1/2 = f + x xfk-X2 + x3) s y ^ r . A/ 
n=1 1=1 

and 

/?=/ 

where 

V / r r A " + * - (1 + ^)2[x(X~X2 + X3)] ^X X2* 
2(l + X2(x2+2) + X4) Z Z 

= -^3x(x2 + 2)/2 - X4x(x2 + 1 + X2)/2 
1 + X2(x2+2) + X4 

C1/X = x/2 and C2fX = x/2 . 

There are two further things to do. These differences clearly alternate in sign. To convert to regular differences all 
the same sign, we change the minus sign to a plus in front of the even powered term and then replace X by - X . 
This results in the following theorem: 

Theorem 4. 
Gx fcX; - ~ X ^ ^ 2 + 2)/2 + X4x(x2 + 1 - X2)/2 

l-X2(x2 + 2) + X4 

Theorem 5. The generating function for the /-differences between alternate corners is 

X3x(x/2) + X4(x2+1- X2)[(x2 + 2)/2] 

1-X2(x2 + 2) + X4 

Proof, For the /-differences one begins with 

and 
1=0 

i=i 

1 + \2(x2 + 2) + \ 4 

_X+ X + \2x2 + \ 3 

1+\2(x2 + 2) + \4 

M M I !- 1+\2(x2+2) + \4] 

± -X + X2(x2 +1)- \3(x2 + 3) + \ 4 - 2\5 

+ _ J _ j" x + 'X + 'X2x2 + \ 3 1 

2(1 - \) 1 + \2(x2+2j + \ 4 

Now to directly form the /-differences: 
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i=1 i=1 

But, C1fY = -% and C2tY = x/2. Thus, 

2t„2_ \3/%,2_ 
E fr r IV - 1 + ^ - X + \z(xd +1)- \^(x2 + 3) + Kf- 2ti 

1=1 1 + X2(x2 + 2) + \4 

. \Jx2 -\4(x4 + 3x* +2)-{x2 + 2Jkb 

2(1 + \2(x2+2) + \4) 

From the diagrams it is clear that these differences are associated with odds and evens and on their respective lines 
they alternate in sign. We wish the initial values to be positive. 

] T \Ci+2ty-Cj,y\X ~ -
i=1 

(-X2)Xx2 + (-\)2(x4 + 3x2+2) + (x2+2)(-\2)3 "I 
1-\2(x2+2) + \ 4 

X3x(x/2) + \4(x2+1- \2)[(x2+2)/2] 

1-\2(x2+2) + \ 4 

j E ^ w ^ ' ^ - f J2 f2"«M* 2n 

n=0 n=0 

Recall that thex-differences 

E (-inci+2,x-cLx\v = -x—^- 22 f2n(xfh2n+i+£ 21 hn+3M* 
i=1 n=0 n=0 

Thus, uniformly we see that the slopes of the lines through the centers are 

Cn+2,y - Cn,y = x/2 _ -X 

2n 

£n+2,x - CntX _fx2 + 2)/2 x
2 +2* 

Cn+2,y " Cn,y = (x2+2)/2 = X2 + 2 
Cn+2,x~CritK (x/2) X ' 

odd n, 

even n 

Thus, the centers lie on two straight lines which are orthogonal since the product of their slopes is - 1 . This con-
cludes the proof. 

Theorem 6. The centers C2j+i he on a line with slope -x/(x +2) and the centers C2s lie on a line with slope 
(x + 2)/x. These lines are orthogonal and intersect at the point (u,v), where 

x nnri ., _ -2 

x2 + 4 
and 

x2 + 4 

Proof. It is easy to show that the lines through £7 and C3, and through C2 and C4, respectively, do meet in the 
point (u,v) specified. 

Theorem 7. If Q is the point / x 
I x -2 \ 

x2+4 x2+4 

then the center Cn is Dn units from Q, where 
ln(x)\/x* +5x2 +4 

2(x2 + 4) 
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and in (x) is the nth Lucas polynomial, i1(x)=x, t2to=x2 + Z and in+i(x) = xinM + ln-lM-' 

Proof. Given that C1 = (x/2, -1/2) and C2 = (x/2, x2/2)f one can compute 

D2 =[ - * - - x ) 2 + l -=l~ + 1\2 -X2(x2 + 2)2+x4 _x6 + 5x4 + 4x2 

\ x2+4 2 I \ x2 + 4 2 I [2(x2 + 4)]2 [2(x2 + 4)]2 

0 = x^x* +5x2 +4 

It is also easy to verify that 
2(x2 + 4) 

D = (*2+2)<Jx4 +5x2 +4 

2(x2 + 4) 

Now consider the centers Cn+2 and Cn. The points lie on a line through 
x -2 

x2 + 4 x2+4 
which separates them. The x and y differences from Cn+2 and Cn are 

2 
~—p-fnM and *fnM, 

respectively, for one line or 
ffnM and *-±L fn(x)/ 

respectively, for the second line. Thus the distance 

\On+2 - Cn | = yJxA + 5x2 + 4 fn+1 (x)/2 

in any case. 
There is an identity for Lucas polynomials (see [3], p. 82) 

ln+l(x) + in-i(xt = (x2 + 4)fn(x). 

Now, suppose 

_ <WfrAA4 + 5x2 +4 
un - -

2(x2+4) 
Then 

\Cn+2~ Cn\~ Dn = Dn+2 

fn+1(x)sjx4 +5x2 +4 __ £„frA/*4 +5x2 +4 = in+2M>Jx* +5x2 +4 
2 2(x2 + 4) 2(x2 + 4) 

This concludes the proof of Theorem 7. 
1 THE SECOND GENERALIZATION 

In the last section we considered the rectangle whose edges were fn (x) and xfn (x)f where 

fn+2 to = xfn+1 to + fn M 
with 

f0M = 0 and ff(x) = 1; 

that is, the Fibonacci polynomials. Here we consider the sequence of polynomials such that 

Uj(x) = I U2to = P, and Un+2M - xUn+1(x) + UnM, 
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the generalized Fibonacci polynomials. We shall prove the following theorem. 
Theorem 8. Sf one starts with a 1xp rectangle and adds counter-clockwise rectangles/7 by/?*, —, Un(x) by xUn(x), 

then such squares in the whirling array have their centers on two straight lines with slopes -(x2 + 2)/x andx/(x2 + 2), 
which are orthogonal. 

P3<0,x(xp + 1)) 

PQ(0,0) 

• - — — — ' -1 

x(xp + 1) by (xp + 1) 

I ; I 

L_< 

P 
xp 

ih,-,—.,..,.,,„•., „„ — . , J 

P2(xp + 1,0) 

Pl(l-p) 

Figure 3 
Proof. To establish that the centers lie on two perpendicular straight lines we shall have to find the coordinates of 

the vertices Pn. As before, we consider the rotation matrix 

and the sequence of vectors 
I/? = (I -x), l/J = (x,1), 

0 11 

l/f = (-1x1 V2 = (-x,-n, 
where V* = V^ when n^m (mod41 

We shall also need the following identities for Fibonacci and Lucas polynomials (see [3]) : 

fn+2kM~fn-2kM = LnM
f2kM 

fn+2k(x) + fn-2k(x> = fnM^2kM 

fn+2k+1M + fn-2k-1M = £n M f2k+1 M 

fn+2k+lM~fn-2k-lM = fnMl2k+lM • 

It is then easy to establish, on lines similar to Theorem 1, that 

(1) Pn-l + VnUn(x), 

where the ! Un } is the sequence of polynomials 

(2) UjM = I U2(x) = pf U„(x) = xUn^U) + Un-2M. 

One also recognizes from (2) that the Un obey 

(3) Un+1(x) = pfnM+fn-rfx) , 

where the fn(x) are the standard Fibonacci polynomials. 
If Pnx and / ^ y denote the A-- and/-coordinates of Pn, one can establish from (1) that 

P2n+1,x = (U1-U3+U5-.-. + (-7)%2n+1)+(-x)(-U2 + U4---- + (-1)nU2n) 

= (-1)nfn+1(x)Un+1(x) + (-1)n+1xfn(x)Un+1(x) = (-1)nUn+1(x)fn^(x) 

from which one can easily deduce that 
/ ? - / / P2n+3,x = (-ir'Un+2MfnM, P2n~7,x = (-1)""'Un(x)fn-2(x) 

We also have 
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P2n,x = [U1M-U3M + U5M--+(-1)n-1U2n_1(x)] 

-x[-U2(x) + U4(x)- ••• + (-1)nU2n(x)] 

= (-1)n-1fn(x)UnM + (-1)n+1xfn(x)Un+1(x) 

= (-1)n-1fn(x)Un+2(x) 

which implies that 

P2n+2,x = (-1)nfn+lMUn+3M, 

P2n-2,x = <-Dnfn-l(x)Un+i(x). 

Now, because the Cn are the centers of the squares, we get 

C„ = (Pn+Pn-1>/2 

and so we get 
C2n+3,x - C2n+l,x = (P2n+3,x + P2n+2,x ~ P2n+1,x - p2n,x^2 

= %[(-1)n+1Un+2(x)fn(x) + (-1)nfn+1(x)Un+3M 

+ (-1)n+1Un+1Mf„-iM + (-Dnfn(x)Un+2(x)J 

= {-=lf- Hpfn+2 M + fn+i (x))fn+1 (x) - (pfn (x) + f„_ j (x))fn. j Ml 

= i=l£- lp(fn+2(x)fn+1(x) - f„(x)fn-i (x» + f2n+1(x) - f2.-, (x)] 

= (-^f-[pxf2n+1(x)+xf2nM] = (—^ xU2n+2(x). 

We have also 
C2n+2,x - C2n,x = (P2n+2,x + P2n+1,x ~ P2n,x ~ P2n-1,x>/2 

= 1/2[(-1)nfn+1(x)Un+3(x) + (~1)nUn+1(x)fn-1(x) 

+ (- 1)nfn (x)Un+2(x) + (- 1)nUn Mfn-2(x)l 

= {^f- [(pfn+2(x) + fn+1(x))fn+1(x) + (pfn(x)+fn.1(x))fn.1(x) 

+ (pfn+1 (x) + fn (x)jfn (x) + (pfn-1 (x) + fn.2 M)f„-2 (x)] 

= {^f- lpfn+i(xHfn+2M + fnM)+pfn-iM(fnM + 1n-2M) 

+ f2n,2M + f*_,M + f2n(x) + f2n+1(x)l 

= {-=*f- [pf2n+2 M + Phn-2 M + f2n+1 M + hn-3 MJ 

= {^f- [pl2(x)f2n(x) + S.2(x)f2n-l(x)] = {^f- l2(x)U2n+1(x). 

Now we shift our attention to the y-coordinates. From (Dweget 

P2n+1.y = (-xHUl ~ U3 + - + (-DnU2n+1) 

- (-u2 + u4-u6 + - + (-vnu2n) 
= (-1)n+1xfn+1(x)Un+i(x) + (-1)n+1fn(xjUn+i(x) 

= (-1)n+1Un+1(x)fn+2(x). 
and 

P2n+3,y = (-VnUn+2(x)fn+3M, 

P2n-1,y = (-VnUn(x)fnH(x) . 
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We also have 
P2n,y = <-x)[U1(x)-U3M+- + (-1)n-1U2„-iM] 

- l-u2M + U4M- - + (-Dnu2nMl 

= (- J)nxfn M Un (x) + (- Vn+1fn (x)Un+1 (x) 

= (-1)n+1fnMUn-i(x) 
and 

p2n+2,y = l-V"fn+1MUnM, 

P2n-2,y ' (- Vf„-1 MUn-2M. 

From the above calculations, we find 
C2n+3,y ~ C2n+1,y = (p2n+3,y + P2n+2,y ~ P2n+1,y ~ P2n,y>/2 

C2n+3,y ~ C2n+1,y = %[(-DnUn+2(x)fn+3(x) + (- 1)nfn+1 (x)Un(X) 

+ (-1)nUn+1Mfn+2(x) + (-J)nf„(x)Un.1(x)J 

= ~^- [<pfn+l(x)+fn(x»fn+3<x) 

+ (pfn. 7 (x) + fn,2 M)fn+1 (x) + (pf„ (x) + fn.! (x))fn+2 (x) 

+ (pfn-2(x) + fn.3M)fnM] 

= (^f- [pf„+lM(fn+3M+fn-l(x)) 

+ pfn (x)(fn+2(xj + fn.2M) + fn (x)(fn+3(x) + fn.3M) 

+ fn-2(x)f„+l(x)+fn-1<x)f„+2(x)] 

(-=jf- lpf2n+1Mi2M + pf2nMi2M 

+ fn Min (xjf3(x) + f2n Ml 

= (JZJ^ l2(x)U2n+2(x) • 

Our final step is to find 

C2n+2,y-C2n,y = (p2n+2,y + P2n+1,y ~ P2n,y ~ P2n-1,y)/2 = H[(-Dnf„+iMU„M 

+ (-Dn+1Un+1(x)fn+2(x) + (-1)nfn(x)Un.1(x) + (-1)n+1Un(x)fn+i(x)] 

[(pfn(x) + fn.j (x))fn+2(x) - (pfn-2M + fn-2<x»f„Ml (-1)n+1 

= (~7>2 [pfn(x)<fn+2M-fn-2M) + fn+2(x)fn-lM<-fnMfn-3(x)J 

i t\n+1 I i\n+1 
= ^ [pfn(x)Ln(x)f2(x)+xf2n-l(x)l = ^ xU2nHM. 

So, from the above results, we have 
C2n+3.y-C2n+1iV = (-1)ni2MU2n+2(x)-2 = L2ix}_ 

C2n+3lx-C2n+1,x 2-U2n+tM-x(-J)n x 

which tells us that the Cn for odd n lie on a line with slope (x2 +2)/2. We also find 
C2n+2.v - C2n,v = (-1)n+1xU2n+1M-2 = _ 

C2n+2,x ~ C2rl,x 2- (- 1)n l2 (x)U2n+1 M £ 2 M 
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which tells us that the Cn for even n lie on a line with slope -x/(x2+2). Further, since the products of the slopes is 
- 1 , these lines are perpendicular. This proves Theorem 8. 

From the above result it follows almost trivially that 

Theorem 9. If Dn is the distance of Cn from the point of intersection of the two lines of centers, then 

n _ tfiMy/x4 +5x2 +4 
un _ . — f 

2(x2 + 4) 
where the ifj(x) are the generalized Lucas polynomials 

£? = P, £J = xp+2, and L*+2(X) = xi*+1(x) + i*(x). 
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A LEAST INTEGER SEQUENCE INVESTIGATION 

BROTHER ALFRED BROUSSEAU 
St. Mary's College, California 94575 

In the fall semester of 1964, four students, Robert Lera, Ron Staszkow, Rod Arriaga, and Robert Martel began an 
investigation along with their teacher, Brother Alfred Brousseau, of a problem that arose in connection with a Putnam 
examination question. The problem was to prove that if 

Pn+1 = [Pn+Pn-1+Pn-2l/Pn-3 

produced an endless sequence of integers while the quantities/?/ remained less in absolute value than an upper bound 
A, then the sequence must be periodic. The divergent idea that led to the research was this: How can one insure an 
infinite sequence of integers from such a recursion formula? One quick answer was to use the greatest integer function. 

Initially an investigation was begun on: 

an+7 = — — — . L an-2 J 
where the square brackets mean: "take the greatest integer less than or equal to the quantity enclosed within the 
brackets." Very quickly, zero entered into the sequence with the result that there were mathematical complications 
once it arrived at the denominator. 

To avoid this problem, it was decided to try using "the least integer function" instead of the greatest integer func-
tion. The notation adopted was: 

M* = n, 
where n is the least integer greater than or equal to x. With this approach starting with three positive integers the 
function: 

$n+1 

gives terms that are always > 1. 
an-2 

The problem was enlarged by introducing two parameters, p and q, defining: 


