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1. INTRODUCTION 

Tridiagonal matrices are matrices like 
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and are made up of three diagonal sequences \a,-}, \bj\, \c,'f of real or complex numbers. They are of much use 
in the numerical analysis of matrices. They also have interesting arithmetical properties being connected with the 
theories of continued fractions, recurring sequences of the second order, and, in special cases, permutations, graph 
theory, and partitions. We shall be considering two functions of such matrices, the determinant and the permanent. 

By the permanent of the matrix 
A = M„x* is meant the sum 

extending over all permutations 

per A = Y^al,n(Da2,-n(2) -3t n,n(n) 

n: 
( 1, 2,-, n \ 
\ ir(1), n(2), - , irfn) ) 

Thus the definition of the permanent is simpler than the corresponding definition of the determinant in that no 
distinction is made between odd and even permutations. In spite of this apparent simplicity, permanents are usually 
much more difficult than determinants in their computation and manipulation. For tridiagonal matrices, however, 
determinants and permanents are not very different. In fact we see that 

per 
and 

per 
b1 

32 
0 

cj 
b2 

33 

0 

C2 

h3 

\b1 c, "1 

] • 

= hih2+32Ci 

b 1 b2b3 + a2b3C / + a 3b 1 c2 

and, in general, the permanent of the tridiagonal matrix based on | a, I, < b; \, | c, I \s equal to the determinant 
of the matrix based on { - a / f , \bj\f | Cj\. Thus it is sufficient and simpler to consider the permanent function 
of tridiagonal matrices. In fact we shall need only the method of expansion by minors in developing what follows. 

2. STANDARDIZATION OF TRIDIAGONAL MATRICES 
For our present purposes we make the assumption that the elements/? on the main diagonal are all different from 

zero. It is therefore possible to divide the elements in each row by its main diagonal element. Thus we obtain a 
matrix of the form 

150 



APR. 1975 FIBONACCI AMD RELATED SEQUENCES IN PERIODIC TR1DIA00NAL MATRICES 151 
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(2) 

whose permanent (or determinant) is related to that of the original matrix (1) by the factor hfb2 — OQ. Our next 
step towards standardization is to observe that the permanent of (2) is not a function of A2 and C? but only of their 
product A2C1. To see this, we expand the permanent by minors in the first column obtaining 

per 

7 
A3 
0 
0 
0 

c2 
1 
A4 
0 
0 

0 
03 
1 
A5 
0 

0 0 
0 0 
c4 0 
1 c5 

A6 1 

+ A2C1 per 
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A6 
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0 
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1 

which is a function of A2Cj. By induction, therefore, the permanent of such a matrix as (2) will depend only on 

A2C1,A3C2,-~,AnCn„1 . 

Hence, without loss of generality, we may assume that the C's are all equal to 1 and by an obvious change in nota-
tion define the standard tridiagonal matrix by 

r / / 
ai i 
O a2 

0 0 

0 0 » 
/ 0 •• 
/ / » 
a3 7 .» 

loo 0 0 -
10 0 0 0 ... 

) = per Mn(a1/a2f 

. 0 0 
• 0 0 

0 0 
0 0 

/ 7 
&n~1 1 

M = Mn = Mn(a1f a2/ - , an^) 

We denote the permanent of this matrix M by 

A = An = An(a1ra2/-,an^) 
We also adopt the conventions 
(3) A0 = 1 and A.y = 0 . 

1 BASIC PROPERTIES 

We begin with the basic recurrence for An. 

Theorem 1. If n > 7, 
Anfc / / - / a f l . / j = An^(av-fan^2) + an^An.2(a1t-fa^3l 

Proof. This follows at once by expanding An by minors of the elements of the last column of Mn(aj, —, an^l 
This recurrence is an efficient way of calculating successive A's when the a'% are given. It is clear from (4) that A,, 
is linear in each of its independent variables 0,7, —, a „ _ ; . For future use we give Table 1 of A,,. We observe from 
this table that An is unaltered when its arguments are reversed. In general we have 

Theorem2. &n(ai> a
2> "> an-i) = An(an.1f an-2/ ••-, a-f). 

Proof. The theorem holds trivially for n = 0, 7, 2. If true for n - 7 amd n - 2, (4) becomes 

An(a1,a2,-,an-i) = A „ _ / (an-2, ~-.*i) + <*n-i&n-2(a>n-3, - , ai>-

But the right-hand side is the result of expanding the permanent of Mn(an-i, an-2/ —, a-j) by minors of elements 
of its first row. Hence the theorem is true for n and the induction is complete. 
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n 
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1 

2 

3 
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6 

Table 1 

An(a7,a2,~',an„1) 

0 ~~ " ' ~ ~ 
/ 
/ 
1 + CL-] 

7 + df+a2 

1 + a / + &2 + &3 + & J Q>3 

1 + a i + (i2 + &j + 0L4 + a-j0,3 + &2Pi>4 + CL1CL4 

5 

a-, + Of 0,3 + &2CL4 + CL3&5 + &1GL4 + a<2a5 + &1OL5 + GLj CL3GL5 

f=1 

Since An is linear in each variable ay one can ask what are the functions Gj and Hj in 

(1 < j < n). 

an-3>-

(5) An(a7/ •••„ a^f) = Gj + Hjdj 

It is clear from (4) that when j = n - 1 

Gn-1 = &n-l(ah"'*a>n-2h Hn-1 = An-2^p 

The general theorem is 

Theorems. In (5), 
Gj = An-j(aj+i, - , an„i)Aj(ai, - , aH) 

Hj = An-H(ai+1, - , an^)AH(a1t - , ah2) • 

Proof. This can be proved by expanding An by minors of the elements of \Xsjth column and using Laplacian de-
velopment of these minors. However, a simpler proof is afforded by the introduction of the following generalized 
permanents A ^ r defined for K < r by 

(6) AK/r = AKj(a1t a2t -) = AK(ar-.K+1f ar„K+2, - , aM) = AK(ar-i, ar„2, - , ar^K+1). 

In particular we have 

Theorem 1 applied to these two equivalent definitions gives us the following useful relations. 

(7) &K,r = &K-1,r + ar-K+1&K-2,r 

(8) AKtr = A/c- / / r -7 +ar-1&K-2,r-2-

We claim now that for 0 < K < n 

(9) A „ = AK/n An„K + an„KAK„ hn An_K„ y . 

In fact this is trivial when K = 0 by (3) and! (6) and when K= 1 it is a restatement of Theorem 1. To proceed induc-
tively for K to K + 1 we note that 

&n-K = &n-(K+1) + a>n~(K+1)&n~1-(K+1) 
by Theorem 1. Substituting this into our induction hypothesis (9) we obtain 

An = &n-(K+1)\&Ktn
+<ln-K&K-1,n\ +an-(K+7)AK,nAn-7-(K+1) • 

But by (7) the quantity in the braces in A^+^n. Hence our induction is complete. If now we put K= n - / a n d r = /7 
in (6) and (9) the theorem follows. 

As a corollary we have 
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da- = AH(al> a2< '"> ah2)&n-H(aj+2* '"< an-l>-

4. CONNECTION WITH CONTINUED FRACTIONS 

The ratio of two A's is the convergent of a continued fraction. More precisely we have 

Theorem 4. 
1+*^!}+ ?*) +...+ an--i\ - An(aj,a2,-,an„1) 

1 \ J \ 1 An,1(a2, a3, -,an-i) 
Proof. By Theorems 2 and 1 we may write 

&n(ai,~',a>n-l) = &„(a„-i,-*ai) 
&n-l(a<2> "'* 0>n-l) &n-l(<>>n-V '"> a2^ 

__ An^(an^1f -ra2) + aiAn.2(a>n-L -*<t>3) _ 1+
 al 

A^fan-i, - , a2) An^ /An„2 

Iterating this identity until we reach A / / A # = 1, we obtain the theorem. 
As an example, in case all the a's are equal to 1 we get the Fibonacci irrational 

e = xn+y/5)= z + ^ l + jiU... 
whose successive convergents 

1,2/1,3/2,5/3,8/5,-
are the ratios of consecutive Fibonacci numbers Fn+i/Fn. Hence 

(10) An(1, 1, / , - V 1) = Fn+1 

a fact which follows at once from (4). Conversely as soon as we have developed other formulas like (10) we can 
evaluate other continued fractions of Ramanujan type given in Theorem 4. 

5. PERIVIANENTS WITH PERIODIC ELEMENTS 

We are now prepared to consider the case in which the elements a of A are periodic of period p so that a,+p = a-,. 
We shall find that the permanents 

As, As+p, As+2p, •-

constitute in this case a recurring series of the second order with constant coefficients depending only on/7 and the 
values of a 7, a 2 , —, CLP but not depending on s. From this it will follow that A „ is a linear combination of two Lu-
cas functions Un and Un+i, where h = [n/p] whose coefficients now depend on s = n - hp. More precisely 

Uh = U„(P,Q) = (ah-bh)/(a-b), 
where 

P = a + b, Q = ab 
and 
(11) U0 = 0, U1 = 1, U2 = P 
and 
(12) Uh = PU^-dUn . 

We denote the nxn permanent based on the periodic a's by 

An(ai,Q>2,->api 
so that (10) becomes 

An(1) = Fn+1 . 
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6. THE CASEp= 1 
In this simple case we have 

Theorem 5. 
(13) An(ai) = Un+1(i,-ai). 

Proof. By (12), 
Un+1(1,-ai) = Un(l,-a1) + a1Un..1(l,-a1) . 

But by (4), 
An(a7) = An-i(ai) + aiAn-2(cij) 

since an„i =aj for all n. 
Hence both An and Un+/ satisfy the same recurrence. They also have the same starting values for n = -1 and n = 

0. Hence the two functions coincide. 

Corollary. An^(k) = | ft + jT+~4o,)n - (1 - sJT+lof] / (2n ^TTla). 

Proof. Referring to (13) we see that a and 6 are roots of A-2 -X - a= 0. Examples of the Corollary are 

An^(b) = 1 

&n~l(-V= ^ - sin fan/3) 

An-r(2) = \2n -(-!)"}/3. 

This last example leads, via Theorem 4, to 

as is easily verified. 

7. THE CASEp = 2 

This case is also relatively simple. We have 

Theoremd An(ai,a2> = (1 +a1 +a2>An.2(^u^2)" aia2^n-4(^v^2) • 

Proof. First suppose n is odd so that an„i = a2. Then Theorem 1 gives 

A/7 = An-1 + a>2&n-2 = &n-2 + &1^n-3 + &2^n-2-
But An.3 = An_2 - a2An„4 . 

Elimination of A„_3 gives the theorem for n odd. If n is even, we simply interchange the roles of a / and 0,2. 
The counterpart of Theorem 5 for/7 = 2 is 

Theorem!. A2n(aj,a2) = Un+i<1 + 01 +0,2, 0,10,2) - a<2Un(1 + 01 +0,2,0,10,2) 

A2n+1<aio2) = Un+i(1 +ai+a2,aia2). 

Proof Let Wn = A2n (0,1, 0,2). By Theorem 6 

Wn = (1 +ai + a2)l/f/n-i -aia2y\ln-2 
with 

W0 = 1, Wi = A2(ai/a2) = 1 + 01 . 
But 

Un+i(l + di +02, 0102) - 02Un(1 + 0,1+02, 0102) 

enjoys the same recurrence and the same initial conditions. This proves the first part of the Theorem. The second 
part is proved in the same way. 

We note that, unlike A 2/7 fa/, 02), the function A2n+i(oi, 02) is symmetric in a ; and 02. 
Examples of Theorem 7 are 
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A2n+i(b,i) = 2", A2n(b,1) = 2n~1, &2n(1,0) = 2n 

&2nH(h -V= Fn+1, A2n(j, -1) = Fn+2, A2n(-j, 1) = Fn.i 

A2n+1(u,u2) = %in(1 + (-1)n), A4n(u,u2) = (-1)" 

A2n+1(-co ,co2) = n + 1, A2n(-Co,-oo2) = 1 - nu> 

A2n-id,-i) = ^-sm(*n/3) 

A2n_l(i2> - <2^y-(2-^r_i A2n(i2) - iiijtr+u-jtr 
2\j2 *• 

Here 

The last two results easily lead to 

w = a2*i/3 = -JLtJlL 

»^M*$*~*-
Inspection of the above examples shows them to behave exponentially, linearly or periodically as n -> «.. This is a 
general fact, true of periodic a's of any period length p. 

8. THE GEWERAL PERIODIC CASE 

We now take up the complicated general case of p > 3, although the theorems we are about to obtain hold for/7 = 
1 and 2. For this purpose we enlarge the definition (6) of A^r to include the cases K > r. That is, we define for the 
periodic case 

AK/r(a1f a2, - , ap) = AK(ar-K+i, ®<r-K+2> - , ar-lh 

where the subscripts of the a's are to be interpreted modulo p. Thus if p = 4, 

&5,2(a>1> a2> &3. a4> = A5(a„2, CL-U ®>0> a1> = &5(&2' a3, °>4' &l) 

A4j(ah d2, as, CL4) = A4(a„2, CL-I, a>o) = A4/CI2, &3, a4> 
A3to(a1f a2, 03, a4) = A3(a2, as) . 

It is easily verified that 
^ 5 , 2 ^ 7 , a2, a3, a4) = A4f1+a1A3ro 

which for K = 5 and r = 2 is a particular case of (7). Formulas (7) and (8) are still true in general by Theorem 1. 

Theorem 8. For 0<s<p let 

A (p,s) = AP/ s + as Ap„2,s-; 

B(p,s) = as(APfSAp„2s-l - &p-1,s&P-1,s-l)-
Then \in^s (modp), 

An+p = A(p,s)An - B(p,s)An„p , 

where the argument in all the A's is fa 7, a2, •••, apl 

Proof, let n=ph +s. If in (9) we set K = p and use the fact that an+; = as+,- we get 

(14) Aph+S = APfSAp(h^1)+s + asAp.1fSAp(h.1)+s.1 . 

In the same way replacing n by n - p and setting K = p - /we have 

(15) &p(h-1)+s-1 = &p-1,s-1&p(h-2)+s + aS&p-2,s-1Ap(h-2)+s-1 • 

Beginning with (14) and continually applying (15) gives the following for A,, 

&Ph+s = &p,s&p(h-D+s +&P-1,S&P-U-1 ] C a * M I V 2 ; - / ) M&p(h-ii-l)+s +&p-ua!1s\ &p-2j-l \ h~1&s~l • 
11=1 
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h-1 

(16) &p-1,s&p-1,s-1 J2 ^{^p-Zs-^^&pfh-Ml+s 
\i=1 

= &ph+s - A p s &p (h- 1)+s ~ a-s^p- 1,s As- / 1 Ap-2,5- 7 f • 
Next we multiply both sides of (16) by ds&p-2,s»1 ana" a ^ 

to both sides. Sf we subtract this result from (16) when h is replaced by h + 1 we get 

&p(h+1)+s~ &p,s&ph+s = as \&p-2,s-1Aph+s ~&p,s&p-2,s-1 &p(h-1)+s 

+ &p-l,s-1&p-1,s&p(h-1)+s \ • 

Collecting the coefficients of Ap^+S and &p(h-D+s 9'ves u s t n e theorem. 
Our next goal is to show that/4fos,/ and B(p,s) depend on/? but not ons, 

Theorem 9. B(p,s) = (-1)pa1a2"-ap . 
Proof. It will suffice to show that 

(17) AP/5 Ap_2,s- 7 - Ap„ y Ap_ 1/S„ 1 = (- if as. / as-.2 • • • as-p+1 > 
where the subscripts on the a's are to be taken modulo/?, because then, by definition of B(p,s) we 

B(p,s) = (-1)pasas-i -as-p+1 = (-1)pa1d2-ap. 
To prove (17) we note that it holds for/? = 1 since the left member is — 1 and the product of a's is vacuous. Assum-
ing the result holds for/? and noting that (7) gives 

Ap+1,3 = &p,s + &s~p AP- 1,S 
and 

Ap/S-/ - Ap_^s„y = %-pAp/5Ap„2,s-/ -
We have 

&p+1,s&p-1,s-1 - Ap/SAp/S_; = -Ap/S/Ap/S-y - Ap_7/S./7 

+ as-p Ap_ 1/S Ap„ ;/S_ 7 

~ -as_p/Ap/SAp_2,s-; - &p-i,s&p-i,s-il 
= (- 1)p a5_ / as„2 •'' &s-p+1 as-p • 

Hence (17) holds for/? + 7 and the induction is complete. 

Theorem 10. A(pfs) is not a function of s. 

Proof. Using both (7) and (8) with k = p and r = s and s = 1 we have 

A(p,s) = &p,s + asAp„„2,s-1 = aS&p-2,s~1 + &p-1,s-1 + &S-1 &p-2,s-2 
= as. 7 Ap.2/S-2 + Ap,5- 1 = A (p,s - 1). 

Hence A(pfs) does not depend on s. 
We can write 

(18) A(p,s) = A(p,p) = Pp = P = Ap(af, - , ap-i) + apAp-.2(a2, - , ap-2> 
and 
(19) Qp = a = (-1)pa1a2-ap 

and restate Theorem as follows 

Theorem 11. An+P = PAn - QAn„p . 
Armed with this information we can at once evaluate An(ai, —, ap) as a linear combination of two consecutive 

members of the Lucas sequence <Um(P,G)\ as follows. 
Theorem 12. 

(20) Ahp+S = AsUh+1(PfQ) + (Ap+S- PAs)Uh(P,Q). 
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Proof. This relation holds for h = 0 and, since (JJ2(P,Q) - P for h - 1. By Theorems 11 and 12 both sides enjoy 
the same recurrence. Hence they coincide. 

9. MORE QM THE FUWCTIOWP 
The function 

P = Pp(ai,d2, '".ap) 

defined by (18) is not as simple as Q. We already know that 
P1 = 1 and P2 = 1+a-j + 0*2. 

We can tabulate Pp as follows 

p 

T 
2 
3 
4 

5 

6 

Table 2 

Pp(a7,a2, ~',ap) 

1 
/ + a 1 + 0,2 

1 + a 1 + 0,2 + a 3 

1 + a-i + a2 + a3 + a4 + a1'a3 + a2a4 
5 3 2 

1+^1 a / * iC aiai+2+^2 aiai+3 
1=1 i=1 1=1 

6 5 2 
1 +J2 a>+ 5 3 aiaj - 53 aiai+1 + 53 

i=1 i<j<6 1=1 i=1 
a,U j+2ai+4 

Further entries in this table are left to the curiosity of the reader. It will be observed that the entries cease to be 
symmetric functions of the a's with p = 4. 

10. FIBOiACCl-TYPE A'S 

The permanent of a tridiagonal matrix with periodic a's will depend on Fibonacci numbers if we can make P = 1 
and Q = -1 since 

Um(l-D = Fm. 
For/? = 3 this requires 

P3 = 1 + di +d2 + CL3 = 1, -0-3 = ai(L2(l3 = 1. 

This means that the three a's are the roots any cubic equation of the form 

(21) x3 + cx- 1 = 0. 

The simplest example is c = 0 for which 
a / = 1, 0L2 = co, a j = to 

or some other permutation of these. For this case Theorem 12 gives the examples 

&3h(l co, co 2 j = Fh+1 - co2Fn 

&3h+i(l co, co.2j = Fh+1+u2Fn 

&3h+2(i^,<^2) = 2Fh+1 . 
Another special case is that of c = -2 in which the roots of (21) are - 1 and the two Fibonacci irrationals, for 
example _ 

a1 = Q, <i2 = 6, CL3 = -1. 
For this choice we get 
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A3h(9,9,-1) = Fh+2 

A3h+1(Qj,-i) = Fh+1-0Fh 

A3h+2(d,d,-1) = (1 + MFh+1. 

The reader may wish to write such formulas for other permutations of 6,0, - 1 . 
For/7 = 4 our requirement becomes 

(22) a ; + 0,2 + 0L3 + CL4 + a^a3 + CL2CL4 - 0, a 1CL2CI3CL4 = —1. 
Examples are _ 

a ; = i, a,2 = -1, a3 = -I, a.4 = 1, a/ = GO, 0*2 = 6, a3 = co , 0,4 = 6. 

More general examples are 
a ; = V2(-t + s/t2 -4e)f a2 = %(t + y/t2 +4e), 

a3 = 1/2(-t - y/W^Te), a4 = 1/2(t - ^/FTJe), 

where t is any real or complex parameter and e = 1. In any case there are eight permutations of the four a's that 
maintain (22). These are, in cycle notation 

(1)(2)(3)(4), (1)(3) (24)f (13X2X41 (13) (24) (12) (34), (14X23), (1234), (1432). 

With any one of these choices we have for An = An (a-j, 0*2, a3, 04) 

A4h = Fh+1-~a4(1 + a2)Fh 

A4h+1 = Fh+1 -a1a4Fh 

A4h+2 = (1+al)Fh+1 ~^1^2a4Fh 

A4h+3 = (1 + a1+a2)Fh+1 . 

Instead of forcing An to involve the Fibonacci numbers we can make it a linear function of n by choosing/7 = 2 and 
Q = 1 because Un (2,1) = n. 

For/7 = 3 the conditions become 

(23) a<f +a2 + a3 = 1, aja2a3 = -1. 

One obvious solution is to choose two of the a's equal to 1 and the third - 1 . Thus we find 

A3h(1, 1, -1) = 2h + 1, A3h+1(j, 1, - / ; = 7, A3h+2(1, 1, -1) = 2h +2, A3h(1, -1, 1) = 1, 

A3h+1(1,-1,1h2h + 1, A3h+2(J,-1,1) = 2h+2, A3h(-1,1,j)=1, A3h+J (-1,1,1)= 1, A3h+2(-i,1,1) = 0. 

Another choice of a's satisfying (23) is any permutation of 

-2 cos (2TT/7), -2 cos (4-n/7), -2 cos (6TT/7). 

The most general solutions of (23) are of course the roots of 

x3 -x2 + cx+ 1 = 0 

and this leads to the linear function 

A3h+S = As+ (As+3 - As)h. 

The reader may have observed in the above that, of all the formulas for Ahp+S, the simplest is that for s = p - 1. 

The reason for this phenomenon is to be seen by substituting s = -1 in Theorem 12. We obtain simply 

Ahp^ = Ap^Up(P,Q). 


