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INTRODUCTION 

Led intuitively by the fact that the last digit of the positive integral powers of the non-negative integers repeat 
every fourth power, we proceed to an analogous general result for the last z digits (forz a positive integer). To do 
this we need first to define and build up some theory and properties for the orders and complete classes of Exponen-
tial Modular Identity Elements (EMIE). The last section then applies these.. 

1. EXPONENTIAL MODULAR IDENTITY ELEMENTS 

Let n be a positive integer and let a be any z digit positive integer. Define: 

A(z) = \a:an = a (mod Wz), for all n } . 

Less formally, A(z) is the set of all z digit non-negative integers, each of which, when raised to any positive integral 
powers, will end in itself. Term elements of A(z) Exponential Modular Identity Elements (EMIE) of orderz. Let 

A =uA(z), 

where the union is over all z e l+ - j positive integers \. A subclass of A all of whose elements have the same last 
digit is termed a class. There are a countable infinity of orders but only four complete classes. (Complete, here, 
means the class contains elements of every order.) The first ten orders and the four complete classes are: 

z (Order) 

1 { 0 , 1 , 5 , 6 } 

2 { 00, 01,25, 7 6 } 

3 { 000,001,625,376} 

4 { 0000,0001,0625,9376} 

5 { 00000, 00001, 90625, 09376 } 

6 { 000000, 000001, 890625, 109376} 

7 { 0000000, 0000001, 2890625, 7109376 } 

8 { 00000000, 00000001, 12890625, 87109376} 

9 { 000000000, 000000001, 212890625, 787109376 } 

10 { 0000000000, 0000000001, 8212890625, 1787109376 } 

Note that order and complete class uniquely determine an EMIE. Classes 1 and 2 are totally specified. Elements of 
Class 2 are universal identity elements because any element of class 2 of t hez^ order when multiplied by any posi-
tive integer is congruent to the testz digits of that positive integer modulo 10z. Elements of all other classes are ex-
istential identities. Define ~ and r to be binary relations satisfying: a~h\\\a and h are elements of the same complete 
class; a r b iff a and b are elements of the same order. Since ~ and r satisfy the reflexive, symmetric and transitive 

c 

1 
2 
3 
4 

(Complete Class) 

{0,00,000,0000,-
{1,01,001,0001, -
{5,25,625,0625,-
{6,76,376,9376,.-. 

} 
} 
} 
} 
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properties, trrey are equivalence relations and the orders (complete classes) have union A and partition A into count-
ably infinite (4) mutually disjoint equivalence classes of cardinality 4 (aleph null). A is neither closed under addition 
nor multiplication. Complete Class 1 is trivially closed under addition and multiplication and complete Class 2 under 
multiplication only. The other complete classes and the orders are closed under neither operation. But since the clos-
ure property is necessary even for a semi-group, group theory doesn't seem to be of any use here. Our integral speci-
fications designate us to number theory. From elementary number theory: 

a2 EE a (mod Wz) => an = a (mod 10z) 

which obviously is useful since it allows us to deal only with squares, but is still quite insufficient. After introducing 
notation, I present the most useful of the properties I have developed. 

Notation: A(z,c,n) is the nth power of the EMIE of zth order and complete classc. L(a,b,n) is the last a digits 
of the nth power of b. If n = 1, we may omit the /?. Of course z, c, nf a, b are positive integers, b can equal 
0. a = a**N. /, lu l2, -"represent arbitrary positive integers. 

Property 1. L(z - 7, A(z,c)l = A(z - 7, cl 
Proof. If this were not so then the last z - 7 digits of A(zfc,2) would not equal the lastz - 7 digits of A(z,c) and 

so the last z digits of A(zfc,2) would not equal the last z digits of A(z,c). But this contradicts/I(zfc) being an ele-
ment of the zth order so the property must be true. 

Property 2. (a) L(z + k,A(z,3,(2z + 1)Wk)) = A(z + k,3) 
(b) L(z + k+ 1,A(z,3,(2z)Wk» = A(z + k+ 1,31 

wherez,%k^ I , z > k and in (a) c can be 0. 
Proof. A(z + k,3i\s EMIE, so 

A(z + k,3) = A(z + k,3,jWk) = (Wzx + A(z,3)h*jWk == 0 + 0+- +0 + A(z,3,jWk) 

= A(z,3,(2* + DWk) = L(z + k,AU,3,(2z + 1)10kH (mod Wz+k), 

where / = 29. + 7 and x is the appropriate nonnegative integer. (Note: Though x is unique for given z and k, it does 
not make any difference whether we know what it is or not as far as this particular result goes.) 

Also, 
A(z + k+1f3) = (Wzy+A(z,3)h*mWk = Wz+k (ym)(-5)+A(z,3,mWk) 

ss A(z,3(2z)10k) = L(z + k+ 1,A(z,3,(2i)10k)) (mod Wz+k+1) 

using the fact that m = 2st is even and y is the appropriate nonnegative integer. 
Therefore 

A(z + kf3) = L(z + k,A(z,3,(2z+l)Wk)) (mod Wz+k) and A(z + k + 1,3) = L(z + k+ 1fA(z,3,(29.)tOk)), 

but the first pair are both z + k digit numbers and so are equal. Likewise the second pair are both z + k + 1 digit num-
bers and so are equal. 

Property 3. (a) Hz + k,A(z,4J 10k» = A(z + k,4) 

(b) L(z + k+ 1tA(z(4f{5Si)Wk)) = A(z + k+1,4), 
where z > k. 

Proof. A(z + k,4) = A(z + k,4,j ?Ok) = (Wzx + A (z,4))**j Wk = 0 + 0 + - + 0 + A (z,4,j Wk) 

= L(z + k,A(z,4J 10k)) (mod Wz+k) 
so 

A(z + kf4) = L(z + k,A(z,4,nOk)) 
because they are both z + k digit figures. 

Also, 
A(z + k+1,4) = (Wzx+A(z,4))*M5z)Wk = 0 + 0 + - + 0 + (5z)WkWzx(-6) + A(z,4,(5si)Wk) 

= L(z + k+1),A(z,4,(5z)Wk)) . 

A(z + k+ 1f4) = L(z + k + J,A(z,4, !5z)Wk)l 
Property 4. 2jA(n,3,b) = 5J}A(n,4,b) .= 0 (mod W1), where / < / <m/n (j,n)= m. 
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Proof. 2'A (n,3,b) = 2JA (n,3) = 2j L(n,A (1,3, Wn~1 (2i + 1)». 

(Usingproperty 2(a) withz = 1, k = n~ 11 But let /? '= (2n + 1)10n"1 then this is congruent to 

L(n,2jA(1,3,b'» = L(n,1Qm (2hm 5b'~m)) = L(m,10ml) = 0 (mod 10m) = 0 (mod 10'), 

where 1 </ <m and / = 2J~m5b ~m is a positive integer. 

5JA(n,4,b) - 5jA(n,4) = 5j L(n,A(1,4,k10n"1)) = L(n,5JA(1,4,k10(n'u)) 

= L(n,3Qm5hm6b") = L(m,30mI') = L(m,10mI") = 0 (mod 10m)^ 0 (mod 10'), 

where 1 <l<m; b" = k1Un'1 - m, I" = 3mI'; I' = 5hm6b". 

:. 2jA(n,3,b) = 5jA(n,4,b) == 0 (mod 10'). 

Property 5. (a) L(z + k+j, A(z,3,d» = A(z + k+j,3) 

(b) Hz + k +j, A(z,4,d'» = A(z + k +j,4), 

where d = z2J10k, d' = 9.5j10k, 1 < /, k < zxj,k,z^l+. 

Proof. 
A(z + k+/,3) - A(z + k+i,3,d) = (102x + A(z,3))**d = [ d t 2 ) 102zx2A(z,3,d- 2) 

+ [ d - 1 ) WzxA(z,3,d- 1)+A(z,3,d) = 10k2hh(d- 1)102zx2A(z/3,d-2) 

+ 10k2j9.10zxA(z,3,d~ 1)+A(z,3,d) = 102z+kl1 + 10z+k (21 A(z,3,d - 1))l2 + A(z,3,d), 

since 2z +k >z +k+jand min (j,z) =j so by Property 4,2jA(z,3,d -1)^0 (mod 10s) therefore, 2j A(z,3,d - 1) = 
10JL Hence, 

A(z + k +j,3) = 0 + 0 + A(z,3,d) = L(z + k +/,A(z,3,d)) (mod 10z+k+i I 

Thus, A(z + k+j,3) = L(z + k +j,A(z,3,d)l 
Also, 
A(z + k+j,4) E= A(z + k+j,4,df) = (1ifx+A(z,4))**d' = 0+0+-+0+ 1JL5J*(d'-1J j0

2zx2A(z,4,d'-2) 

+ 10k5JmzxA(z,4,d'~ 1) + A(z,4,d') S 7 0 2 z ^ / * Wz+k(5*A(z,4,d'- 1))I7 + A(z,4,d') 

and by using Property 4 and -?z * /r > z * k +j get 

A(z + k+j,4) ^ A(z,4,d') = L(z + k+j,A(z,4,d')) (mod 1Qz+k+j). 

Thu$,A(z + k+j,4) = L(z + k+j,A(z,4,d')l 
Note that by placing/=0,7 in each of these yields Properties 2(a) and 3(a). Property 6 is thus an extension of the 

(a) parts of 2 and 3 made possible by using 4. [For the first part of 2 you must restrict further replacing all positive 
integers c by only the odd integers 2s. + 1.] 

Notation. T(a,b) is the ath digit from the end of the nonnegative integer b, F(b) is the first digit of b. 
Property 6. L (1,2 nx + T(z + 1,A(z,4,2n» = x, where x = F(A(z + 1,4)) and n,z e / * = T(Z + 1,A (z + 1,4)1 

Proof. A(z+ 1,4) - A(z+1,4,2n) = (10zx + A(z,4))**2n = 0 + 0 +- +0 + 2n1QzxA(z,4,2n - 1)+A(z,4,2n) 

since 2z >z + 1 = 10zxn2(-6) + A(z,4,2n) = 2xn 10z + A(z,4,2n) = L(z + 1,2xn 10z + A(z,4,2n» 

= 10z T(z + 1,2xn 10z + A (z,4,2n)) + L (z,2xn 10z + A (z,4,2n» = 10z T(z + 1,2 xn 10z + A (z,4,2n) 

+ L (z,A (z,4,2n)) = 10z T(z + 1,2 xn 10z + A (z,4,2n» + L (z,A (z,4» 

= Wz T(z + 1,2xn 10z + A (z,4,2n» + A (z,4) 

:: x = F(A(z+1,4» = T(z + 1,A(z + 1,4)) = T(z + 1,10zT(z + 1,2xnWz + A(z,4,2n) + A(z,4))J 

= T(z + 1,10z T(z + 1,2xn 10z + A (z,4,2n» + T(z + 1,A (z,4)» = T(z + 1,10z T(z + 1,2xn 10z 

+ A (z,4,2n») = T(z + 1,2xn 10z + A (z,4,2n» = T(z + 1,10z2n T(z + 1,A (z + 1,4)) + A (z,4,2n) 
= T(z + 1,T(z + 1,A(z + 1,4))10z2n + T(z + 1,A(z,4,2n») = L(2nT(z + 1,A(z + 1,4)) + T(z + 1,A(z,4,2n» 
= L(2nF(A(z + 1,4)) + T(z + 1,A(z,4,2n))) = F(A(z + 1,4)) 
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replacing k for 2 in the above argument: 
Property 6 (extended). 

L(L(6L(k))nx + T(z+ 1,A(z,4,kn)» = x, 

wherex = F(A(z + 1,4)) and 

L(6L(k» = I ;' *f k~! ' m o d 5*' l"= 0, 2, 4 (Qven) 
\.5 + i if k = i (mod5), i=1,3 (odd) 

Note: L(k) = 0, 1, 2, 3, 4,5, 6, 7, 8, or 9, L(6L(k» = 0, 6, 2, 8, 4, 0, 6,2, 8, or 4 

using /r from 1 to 9 consecutively. 
It is easy to see further that: 
Property 6 (extended further). L(L(6L(k)L(n))x + T(z + 1,A(z,4,kn)) = x, 

whwzx = F(A(z+1,4))m<\ 

L(6L(k)L(n)) = L(6L(kn» ={ '" i f kn s '" (mod5)> l = 0 ' 2 ' 4 . 
f 5 + i if kn = i (mod5), i= 1,3 

Property 6 (final). L(ax + T(z + 1,A(z,4,m)) = x, 

\N\\QrBX = F(A(z+1,4))and , , * , , „ * 
a = L(6L(ai)L(a2) - Lia^)) = L(6L(mh for m = a<ia2$3-®k 

\ i if m = / (mod 5) /"= U, 2, 4 

I 5 + i if m = i (mod5) i = 1,3 

Property 7. L(L(51 (k))nx + T(z + 1,A (z,3,kn))) = x, 

wherex = F(A(z+ 1,3)) and k,n,z e l+ and 
L(5L(k)) = 51, 

where k = i(mod2) and / = 0 o r 1 . 

Proof. 
A(z+1,3) = A(z+1,3,kn) = (10zx + A(z,3))**kn = kn(10zx)A(z,3/kn - D + A(z,3,kn) = knx10z(-5) 

+ A(z,3,kn) = 5L(k)nxWz+ A(z,3,kn) = L(5L(k))nxWz + A(z,3,kn) 

= L(z+1,L (5L (k))nx Wz + A (z,3,kn» = 10z T(z + 1,L (5L (k))nx Wz + A (z,3,kn)) 

+ L(z,L (5L (k))nx 10z + A (z,3,kn)l 

Let a = L(5L(k)l Then L(z,anxWz + A(z,3,kn)) = L(z,A(z,3,kn)) = A(z,3) so 

A (z + 1,3) = Wz T(z + 1,anx 10z + A (z,3,kn)) + A (z,3). 
Therefore 
x = F(A (z + 1,3)) = T(z + 1,A (z + 1,3)) = T(z + 1,10z T(z + 1,anx 10z + A (z,3,kn)) + A (z,3)) 

« Jd+ hWzT(z + 1,anx10z+ A(z,3,kn)) = T(z + 1,anx10z+ A(z,3,kn» = T(z+ 1,aWznF(A(z+ 1,3))+A(z,3,kn)) 
= T(z + 110zan T(z + 1,A (z + 1,3)) + A (z,3,kn)) = T(z + 1,10zan T(z + 1,A (z + 1,3)) + T(z + 1,A (z,3,kn))) 
= L(anT(z + 1,A(z + 1,3)) + T(z + 1,A(z,3,kn» = L(anF(A(z + 1,3)) + T(z + 1,A(z,3,kn» 
= Uanx + T(z + 1,A(z,3,kn») = L(L(5L(k))nx + T(z + 1,A(z,3,kn))) 

[all congruences are modulo 10z+1 ] and 
L(k) = 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9, L(5L(k» = 0, 5, 0, 5, 0, 5, 0, 5,0, or 5. 

:. L(5L(k)) = 51, where k^ (mod2) 
and / = 0 or 1 

Clearly, essentially repeating all steps for the generalized constants we have 
Property 7 (extended). L(gx + T(z + 1A{z^m))) = x = F(A(z+ 1 M 

where 
a,m,z e l+, m = aia2-$k, 3 = L(5L(aj)L(a2) -Ka^)) = L(5L(m)), 
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and 

_ j 0 if m is even ' _ / 0 if every a,- (1 < / < k) is odd 
\ 5 if m is odd j 5 if at least one a,- (1 < / < ^ is even 

Property 8 A(n,3) = A(i,3,2H m) (mod 10*), A(n,4) = A(i,4,5Hm) (mod 10j), 

A(j,3) = A(i,3,2n-''m) (mod 10j), A(j,4) = A(i,4,5^ m) (mod 10'), 

where / < / < / ? . 
Proof. Letz = i,'j = n-i, k = 0, e = /w in Property 5(a); then L(n,A(i,3,2n~' m) = A(n,3). So 

,4/77,3; EE A(i,3,2n^ m) (mod 10n) 

for all/7. In particular, >4ft# = A(i,3,2Hm) (mod 10j ) , but ^ ^ J j = 4 f c # fow</ 70y'jl Thus 

y i f e j ; = A(i,3,2Hm) (mod 10s) and / l f c # = A(i,3,2n~'m) (mod 10'), 
where 1 <j <n. 

Likewise, using Property 5(b) we qetA(n,4) = L(n,A(i,4,5n~'m). So A(n,4)^A(i,4,5n~'m) (mod 10n). Thus 

4 M J = A(i,3,5Hm) (mod 10s) and A(i,4,5n~'m) = A(j,4) (mod 10j), 
where 1 </' <n. 

Property 9. (a) 7/z * 7,/l(z + 1,3)) + T(z + 1,A (z + 1,4)) = 9 
4 

(b) 22A(z'') = 1°z+2 

i=1 
(c) A(z,3) + A(z,4) = 10z+1 

(d) A(z,3) + A(z,4) = 10z + A(z,1)+A(z,2) 

(e) A(z,3) + A(z,4) = A(z,1)+A(z,2) = 7 (mod 10z). 

Uncompleted Proof. IF we assume for the moment that 9(a) is true then it is easy to show the rest. (I know 9 (a) is 
true at least for z = 1, 2, —, 11 because of direct calculation but can't prove it in general. Can the reader?) For we 
know that L(1,A(z,3» + L(1,A(z,4» = 5 + 6= 11 and that A(z, 1) = 0 and A(z,2) = 1 for all z. So for z = 1 we have 

A(z,3)+A(z,4) = A(1,3) + A(1,4) = 5 + 6 = 11= 101 + 1 = 10z + 1. 

So (c) is true at least for z= 1. Now, assume (c) true for k- //then 

A(z,3) + A(z,4) = 10z"1 T(z,A(z,3)) + L(z - 1,A(z,3» + 10z"1 T(z,A(z,4» + L(z - 1,A(z,4» 

= 10z~1 (T(z,A(z,3» + T(z,A(z,4») + L(z - 1,A(z,3» + L(z - 1,A(z,4» 

= 10z'1 (9) +A(z - 1,3) +A(z- 1,4) = 10z~1 (9) + 10z~1 + 1 = 10z + 1 

so if (c) is true f o r z - 1 then it is true forz and so by induction we get (c): A(z,3) +A(z,4) = 10z + 1 z e l+ but, 
A(z,1) = 0 and A(z,2)=1 so 

4 

J2 A(z,i) = A(z,1)+A(z,2)+A(z,3)+A(z,4) = 0+1 + 10z+1 = 10z+2, 
i=1 

which is (b). Also since A (z,1)+A(z,2) = 1, A(z,3)+A(z,4) = 10z + 1 = 10z +A(z,1) +A(z,2) so A(z,3) + A(z,4) 
= A(z,1)+A(z,2) = 1 mod(10z), which are (d) and (e). 

The largest order I've calculated is: 

A12 = {000000000000,000000000001, 918212890625, 081787109376] . 
Note that: 

A(12,1)+A (12,2) +A(12,3)+A (12,4) = 0+1+918212890625 + 81787109376 = 1012 + 2 
and 

T(12,A(12,3» + T(12,A(12,4)) = 9 + 0 = 9 and T(i + 1,A(12,3)> + T(i+ 1,A(12,4» = 91= 1,2, >-, 11 
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which means Property 9 is true for at least order 12. (Concluding Property 9 true for the 12th order concludes it true 
for all lower orders.) 

For minimum effort in finding further orders use: 

L(z + 1,A(z,3,2)J = A(z + 1,3) and L(2x + T(z + 1,A(z,4,2)) = x = T(z + 1,A(z + 1,4)) = F(A(z + 1,4)1 

These are restrictions of Property 5 and 6, respectively. Sf I could prove Property 9, I could cut the work in half cal-
culating only the first of these. Each succeeding calculation of higher orders checks the lower ones. Further casting 
out of nine's and casting out of eleven's are enormously timesaving checks which can be used on both the total prod-
uct and the partial products. Calculate only one of Classes 3 and 4 (Classes 1 and 2 are completely determined) then 
use Property 9 and obtain easily the assumed, but unproved, value of the other. Sf the assumed value is true to the 
appropriate of the two given equations, then all lower orders are found and proved true PLUS you at the same time 
find and prove the next order of that class. You can now keep raising the order as long as you like and then repeat 
the above process saving more time the longer you wait to repeat. (That is, as long as Property 9 does continue to 
hold true-a high probability-you save. At any rate, you haven't lost anything if it doesn't work but you will have 
practically halved the time if it does-and for large digits, believe me, it helps!!!) This method to a large extent, but 
not quite, makes up for the lack of a solid proof of Property 9 for the particular problem of building up orders. 

2. APPLICATIONS OF EMIE 

Observe from the table below the repetitive sequence (listed to the left) of the last digits of a finite subset of the 
set of nonnegative integers to all positive inteqral powers. The bar means "repeated." 

1 
2,4,8,6 
3,9,7,1 

4,6 
5 
6 

7,9,3,1 
8,4,2,6 

9,1 
0 
1 

2,4,8,6 
3,9.7.1 

X 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

x2 

1 
4 
9 
16 
25 
36 
49 
64 
81 
100 
121 
144 
169 

x3 

1 
8 
27 
64 
125 
216 
343 
512 
729 
1000 
1331 
1728 
2197 

x4 

1 
16 
81 
256 
625 
1296 
2401 
4096 
6561 
10000 
14641 
20736 
28561 

x5 

1 
32 
243 
1024 
3125 
7776 
16807 
32768 
59049 
100000 
161051 
248831 
371293 

x6 

1 
64 
729 

4096 
15625 
46656 
117649 
262144 
531441 
1000000 
1771561 
2985984 
4826809 

Obviously, by knowing recursively the last digit for all xn, where X G \ 0,1,2,3,4,5,6,7,8,9} you can determine 
all the last digits of all yn, where y e l+ u { 0 | and n ELIK Noting that column 5 repeats 1, 6 repeats 2, and so 
on, it is logical to induce that the last digit of the positive integral powers of the nonnegative integers repeat every 4 
powers. 0,1,5, and 6 repeat every time with themselves because they are EMIE of order one. 4 and 9 repeat every two 
times on EMIE's of 6 and 1, respectively. 2,3,7 and 8 repeat every four times on EMIE's of 6,1,1,6, respectively. I 
shall now state and prove this induction aided by the EMIE background. Let L(1,a) = L(a). 

Last Digit Property (LDP). x4n+m = L(ym) (mod 10), 
where 

x = (10a + y); m e= { 1 , 2, 3, 4 } ; a,x,4n + m ^ 1+ and y = \ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \ . 

Proof: x5n+m = x4nxm = (10a + y)4n (10a + y)m - y4nym 

but y = 0, 1,.2,.3,.4,.5,.6,.7,.8or9, so y = 0,±1,±2,±4,5 so y4 = O, 1,6,1,6 or s e A(1l Therefore, 

y4»ym
 s y4ym

 s yL(y4ym'1) - yL(y4)L(ym~1). 
But 

yL(y4) - 0*0, 1*1, 2:6, 3-1, 4:6, 5:5, 6:6, 7*1, 8-6, 9-1 = O, 1,2,3,4,5,6,7,8,9 = y. 
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t Wn+m _ / 76 if n > 1 and m = 0 (mod 102) 

So continuing from above, 
x5n+m ss yL(ym-1) s L(y)L(ym~1) = L(ym) (mod 10). 

Having proved LDP, it is only natural that one wonder whether there exists a similar theorem for the last/ digits, 
where z is a positive integer greater than or equal to two. Consider first the case of the last two digits and the num-
ber 2. (We shall use izDPa to mean the Last/ Digit Property of powers of a.) 

I 76 if n > 1 and m = 0 
L2DP2 2

20n+m = < 52 if n> 1 and m= 1 (mod 102) 
f L(2,2m) otherwise, 

where /We 17,2, •••,20} , /?.e= / f . 

Proof. 220 = (270)2 = (1024)2 = 242 = 76 = A(2,4) (mod W2) so for n > 1, 

220n+m = (220f2
m ^76n2m ^76-2m = 75-2m +2m ^L(2,2m) (modW2), 

where/7? ?0,1; if m = 0and n > 7, 220n+m ^ 75-2° + 2° = 76; if m = 7 and n > 7, 220n+m ^75-21 +21 = 52; 
if 77 = ft 22 0 '7* '7 7 = 2™ = L(2,2m) (mod W2). 

L2DP3 j2{?A7̂ m s ^y"; ^ ^ 
Proof. 

J 2 0 = (J J r 0 = f 2 7 ^ = (29)39 = (41)(29)(9) = (41)(61) = (41)(-39) = ~(402- 1) = -402 + 1=01 (mod W2); 

:. 320n+m = (320)n(3m) =s (01)n(3m) = 3m = L(2,3m) (mod W2) 
if n > 1; obvious if /7 = 0. 

L2DP4 T = , , / n _m, 
{ L(2,4 ) otherwise. 

P r o o f 410 = 220 = 76 (modW2). 
Therefore, if n > 7, /77 7̂  ft 

4/On^/77 s 7^4m ^ 7 ^m = 75.4m +4m ^ L(2,4
m) (mod 102); 

lj P = 0/ 4Wn+m = 4m
 s ^ 2 , 4 " ^ foi<M/ 702J; 

\\ n > \ and m = 0. inn+m m n o 
410n+m = f4Wfn = ?6n s 7£ fo^ ^ 2 , 

L2DP5 5 " s L { n = \ (modW2). 
{25 n > 2 

Proof. 52 = 25; \\ n>2, 

5" = 5n~252 = (25<5)5n~3 = 25-5A?"3 ^ - = 25-5n'(n~1} = 25 (mod 102); 

\f n=1, 5n = 51 = 5 (mod W2). 
Another way: 52n = (52 f = (25)n ̂ 25; 52n+1^5-25^25 for 77 e / * ; 51W (mod W2). 

[76 if /7 > 1 and /77 = /J 
L2DP6 65n+m ^ I 56 if 77 > 1 and m=1 (mod W2) 

I L(2,6m) otherwise 

Proof. 65 ^ (16)(36) = 262-102 ^ 76; 
if 777 ^0,7 and 77 > 7, 

if 777 = 0 and 77 > 7, 

if 777= 7, 77 > 1, 

65n+m = 76n6m = jQ^m = 75.6m + 6m ^ L(2/6
m); 

65n+m ^ (76)n s 7 £ ; 

^5/7^A77 __ ̂ ^ ^ JQ^ _ ^ ; 

if 77 = ft ^ ^ s Z.^,^mA 
Since the proofs that follow immediately hereafter are completely analogous to the preceding ones, I will leave 

them to the reader and merely state the results for reference. (I present them here even though I am also going to dis-
cuss a general last two digit property because we can in general get much more information about specific bases than 
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we can about all bases. Also, it is illustrative in getting a good grasp to look back to the analogous occurrence in LDP 
and the material just preceding.) 

L2DP7 74n+m = L(2,7m) (mod W2). 

L2DP8 820n+m = I 76 i f m = Q ' n > 1 (mod W2). 
\ L(2,8m) otherwise 

L2DP9 910n+m ^ L(2,9m) (mod JO2). 

L2DIP10 „ „ „ | 10 sf n= 1 , , < n 2 , 
1 0 = \ an ,u • (mod 1 0 -

{ 00 otherwise 
L2DP11 jjlOn+m _ L(2,11m) (modW2). 

L2DP12 1220"+m
 s I ]* l f " > 1 a " d m = ° (mod W2). 

\ L(2,12m) otherwise 
L2DP13 1320n+m _ L(2,13m) (modW2). 

( 76 if m = Q, n > 1 
L2DP14 1410n+m _ fi4 j f m = 1 f f l > 1 (mod 102} 

\ L(2,14m) otherwise 
I now hazard my best guesses as to the general L2P and LzP. These guesses come from knowledge of the above 

stated results when the base is known and from the fact that having studied a moderately sized table I have found no 
contradictions as yet. I have found much affirmation at least for the concepts which lie at the heart of the property 
(that in L2P we see repetition every 20 powers and in LzP we see it every 4-5 powers). The particular side condi-
tions are more questionable. I present my guesses as an aid to those who want to research my guess and perhaps find 
a solution. I present incomplete proofs in order to illustrate where in the proof I make assumptions I cannot prove. 
Even so, I hope you will find them stimulating if only in providing the direction your approach should or could take. 

L 2 p x
20n+m = x4°5*n+m = i side conditions ( d 1Q2} 

L £ r x ) U2,ym) otherwise 
where plausible side conditions might be: 

'76 if l\x, m = 0, n>\ 
5 0 + / if 2 k 4Jfc, m=1, n>1 

and x = (WOa+y). 
m G | 1,2, 3, - , 2 0 } , a,x,2Qn+m^l+, y e j 0, 1, 2, - , 99 } = H. 

Incomplete Proof. /Fwe ignore side conditions and IF we assume/ is EMI E of order 2 for all y e | 0, 1, —, 99} . 
(We know this is true for / < 14. Anyone for computing the last 85 so we can discard this assumption? If you take 
this approach, you can get L2D but try using it for L3D where y takes on 1000 values and so on. Eventually you 
will have to stop. You will have gained some ground, but hopefully there is an easier way. I think so.) Now 

x20n+m = (WOa^y)20n+m^y20n+m = (y20)%m^fy20)ym^ L(2,y20 )ym ^ L(2,ymJ (modW2). 

The last step can be made since we know what EMIE's of order 2 are and what they do when multiplied by any of 
all possible last 2 digits configurations. This is an exercise in computation that I will not present here. 

The following property is presented on an even less sound basis than the previous one (L2P): 
4-5*-1n+m ( side conditions ,mnH m* \ 

LzP x = \ . , m. . (mod W ) 
\ L(z,y ) otherwise 

where plausible side conditions might be 
iA(zA) if m = 0,n>1 2\x 
\5-Wz~1+y if m=1,n>1 2\x,4Jfx 

and x = (Wza + y ) 
m = | 1,2, 3, . . . > 5 z - ; [ , a,x, AS*'1 n + m e l+, y e \ 0, 1, 2, 3, - , 10z - 1 \ = H'. 

incomplete Proof. /Fwe ignore side conditions, and /Fwe assume]/ is EM IE of order z for all y <E//', then 
x4*n+m

 = (Wza + yh*4.5z-1n + m^y4*5^n+m = (4-5*-1 f ym ^L(Zfy4-5*-1 )ym s L( m} (mod 1Qzk 
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(The last step would have to also be shown. For any particular value of z, we can do a lot of computation as noted 
in L2P above. However, I hope there is an easier way.) 

I leave you at this open-ended point. I feel there is a lot of room for more research in both theory and applications 
of EMIE. I append some numerical examples. 

APPENDIX 
EXAMPLES 

228 = 26.4+4 ^24^6 (mQd w) 

12101 s 225-4+l ^ 21 = 2 (mod 10) 

36,487,69736<766'542 ^ 7^1635(4)+2 s y2 s g (m(jd JQ) 

2485137653 ss 5137653 = 5 (mod 10) 

1921 ^95'4+1 = 91 = 9 (mod 10) 

2148 = 236'4+4 = 24 = 6 (mod 10) 

31081 s 320(54)H s 31 s Q3 (mod102) 

4851085 s 85100(10)+85 s 8§85 s 22542.85 _ 62521,85 _ ft^.^ s ^ ^ ^ 

TO1 0 ' 0 

2 t 0 ~376 (modIO3) 

^081787109376 (modW12) 

^A(WW10 + 1,4) /imM/10<1O1olo+1>) 

545 = 0625 (mod 104) 

= 918212890625 (modIO12) 

^A(2(56l)-1,3) (mod102(56l~1)). 


