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INTRODUCTION 

The common type of partition problem can be stated as follows: let S c N, given /?G/I / , how many ways can we 
write n =si + S2 + — + Sk, S/<ES? For instance, S might be the squares or the cubes, k might be fixed or not 

This paper considers the question: given/?, how many ways can we write n = ao + a-\b + a2b + ••• + ambm, a,- e 
J 0, 1, -1, 2,-2, —, b - /, 7 - b i ? An algorithm is derived to answer this question. This algorithm produces for 
each n a tree, for which questions of height and width are answered. 

1. THE DECOMPOSITION ALGORITHM 

1.1 Definition. Let b > 1 be fixed. A k-decomposition of n, k > 0, is a partition of n of the form n = ao + a-jb + 
a2b

2 + - + amhm, where each a,- e | f t 7, -1,2, -2, - , b - 1,1 -b [ and 3,^0 for exactly k values of i. Ik de-
composition of n is a /r-decomposition of n for some (unspecified) k. 

The number of /r-decompositions of n will be denoted Rk(n). Clearly Rk(-n) = Rk(n), so WLOG we shall assume 
that n > 0. 

1.2 -Theorem. 
(a) /?*fe/?; = 0*fW 
(b) \fn=a (modb), a?0, and if Ar>1, then 

fl*/W = /?A:-7(n -a) + Rk-i(n-a + b) 

, . „ , . ( 7 if n = abJ for some/> 7, some 0 <a <b 
<C' Rl(n> = \ n -x. J. ui x 

| £/ if flfa/r for any /, any 3 
(d) fl*fty = 0 for all k 

(e) If 0 <<?</?, then Rk(a)=1 for all Ar. 

(a) Given any/r-decomposition of n, multiplying the expression by/? produces a /^-decomposition of bn„ So Rk(bn) 
> Rk(n). Given any /^-decomposition of bn, bn = ao + a^b + a2b

2+ — +ambm, clearly b \ao, so 3# = 0. Di-
viding the expression by b produces a ^-decomposition of n. So /fy/W > Rk(bn). 

(b) Let /7 = 3 (mod b). Consider any ^-decomposition of n, n = ao + a^b + — + ambm. n =ap (mod bl; hence a = 
a0 (modbl Thus either a = 3# or a = 30*/?. That is, the first term of the decomposition is either a or a - b. The re-
maining k -r 1 terms then are a (k- 7>decoimposition of n - a or of n - (a - b), respectively. 

(c) Immediate from the definition. 
(d) Assume false. Then for some k there is at least one Ar-decomposition of 0, Q = ao + ajb +— + ambm. Place the 

terms with a,- < 0 on the left side of the expression. Then some integer has two distinct representations in base/?-
contradiction. 

(e) Rk(a) = Rk-i(a-a) + Rk-i(a-a+b) by part (b). 
= 0 + Rk-i(\) by parts (d) and (a) 
= Rk-2(1-1) + Rk-2<1-1 + b) = 0 + Rk-2(l) 
= ... = R7(1) 
= 1 by part (c). 

174 
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This theorem enables us quickly to find R^fn). Moreover, unwinding the algorithm, we can find the k-
decompositions. 

Example 1. Let b = 4. 

65(3) = R4(0) + R4(4) = 0 + R4(1) = R3(0) + R3(4) = R3(1) = R2(0) + R2(4) = R2(1) 
= R1(0) + R1(4) = 1, 

a result we know already. Unwinding the algorithm, 

4 = 4, 1 = -3 + 4, 4 = -12+16, 1 = -3-12+16, 4 = -12-48 + 64, 

1 = -3-12-48 + 64, 4 = -12-48- 192 +256, 

3 = -1- 12-48- 192+256 = -1-3-4- 3-42- 3-43 + h44 . 

The pattern is clear, so from now on we shall use part (e) of the theorem and stop the algorithm whenever the argu-
ment n is less than b. Moreover, because of part (a), we shall consider only n such that b does not divide n. 

Example 2. Let b = 3. 

RJ17) = R3(15) + R3(18) = R3(5) + R3(2) = R2(3) + R2(6) + RJ2) = R2(1) + R2(2) + R3(2)= 1 + 1 + 1 = 3. 

Unwinding, 
1 = -2 + 3 2 = -1+3 2 = -1-6 + 9 
3 = -6 + 9 s=-3 + 9 18 = -9-54 + 81 
5 = 2-6 + 9 5=-1-3 + 9 17 = -1 -9 - 54 + 81 

15 = 6- 18+27 15 = -3-9+27 
17 = 2 + 6- 18 + 27 17 = 2-3-9+27 

= 2 + 2-3-2-32 + 1-33 

Example 1 Let b = 2. 

R3(11) = R2(10) + R2(12) = R2(5) + R2(3) = RJ4) + RJ6) + RJ2) + RJ4) = 1 + 0+1+1 = 3. 
Unwinding, 

4=4 2=2 4=4 
5 = 1 + 4 3 = 1+2 3 = -1+4 

10 = 2 + 8 12 = 4 + 8 12 = -4+16 
11=1+2 + 8 11 = -1+4 + 8 11=-1-4+16 

1.3. Each time k decreases by one, each term Rk(*) splits into at most two terms R^-\{9). In completing the algo-
rithm, there are k - 1 such steps. Hence Rk(n) < 2k~1 < 2k for all n. We have the well known result 

Theorem. \b': i = 0, 1, 2,-\ is a Sidon set. (See [2 ] , pp. 124, 127.) 
1.4 Lemma. If n = a0 +axb +a2b

2 + — + ambm is any decomposition of n, am^O, then am > 0. 
Proof. \Um < 0 , then 

m-1 m-1 
n = S Bib!+ambm <J2 (b-1)b'-bm = bm-1-bm = -1 

i=0 i=0 
-a contradiction. 

1.5 Definition. A/r-decomposition of n Is basic if (a)am > 1, or if (b) a m _ ; > 0 (or both). 
Theorem. Let bh~1 <n <bh. Then for any basic decomposition of n, 
(a) / > h => a,- = 0 
(b) 0 < ah < 1 
(c) If ah = 0, then ah-i > 0 
(d) If ah = 1, then ah-j = 0; and if ajbJ \s the last non-zero term before ahbh, then aj < 0. 

Proof, (a) By the lemma above, if ambm is the last non-zero term, am > 0. Assume m > h. 
Case 1. am>\. Then 

m m-1 

n = J2 a/b1' > ]jT (1 - b)b! +2bm = bm + 1 > bh 

i=0 i=0 
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- a contradiction. 
Case 2. am = 1 and am„f > 0. Then 

m-2 
n > 2 (l-Mb' + Qb™-1 +bm = 1 + bm~1(b- 1) > 1+ bw'7 > 1 + bh 

i=0 

-a contradiction. 
(b) By part (a), there are no terms in the decomposition after a^bh, so ah > 0. Assume^ > 1. Then 

h-1 

n > J2 (1-b)bi + 2bh = 1+bh 

i=0 

-a contradiction. 
(c) if a/, = 0, then there are no terms after a^-/b , so a^i > 0. Assume 5/,./ = 0. Then 

h-2 

n < Y, (b-Vb1 = bh~7 - / 
i=0 

-a contradiction. 
(d) !f a/, = 1, then by the definition of a basic decomposition a^-i > 0. Assume a^-1 > 0. Then 

h-2 
n > i C (l-b)b1 +1bh~1 +1bh = 1+bh 

-a contradiction. The same reasoning shows that if the next to last non-zero coefficient is ajf j < b, then aj < 0. 
Corollary. Let b < n < b , and let k > h. Then no /r-decomposition of n is basic. 

Proof. Every basic decomposition of n ends with a^ibh~1 or with 3/7_2/?/7~2+ 0-bh~1 + l-bh. In either case 
there are at most h non-zero terms in the sum. 

1.6 Theorem. Starting with R^(a), O <a <b, the unwinding of the algorithm produces a basic decomposition of n 
iff k=1. 
Proof. Start with a /r-decomposition of a. 
Case 1. k = 1. The reverse algorithm starts:x7 = a; thenX2 = abp, p>Y, thenX3 = abp + a. 
Case 1a. a > 1 or/7 > 7. Then a'can be any integer such that O < \a'\ <b. 
Case lb. a = p= I T h e n A - j ^ +af. If a' < O, X3 <b. But the forward algorithm stops as soon as the argument is 

less than b. So a' > 0. In either case there is a basic 2-decomposition of X3. The next step is to multiply by bq for 
some q > 1. Clearly the resulting 2-decomposition is basic. Then add a"; the new 3-decomposition is still basic. Con-
tinue until a basic decomposition of n is reached. 

Case 2. k > 1. By the corollary above, since a < b7, no /r-decomposition of a is basic. That is, the reverse algorithm 
starts 

a = a0 + a1b + -+am^bm'1+bm, 

with am_7 < 0. Multiplying by bp produces a non-basic /r-decomposition. Then adding a'gives a non-basic (k+1)-
decomposition. Continue, ending with a non-basic decomposition of n. 

1.7 Definition. Let B^fn) be the number of basic /r-decompositions of n. Let 

B<n> = 1 2 Bk<n). 
k=1 

Remark. Since n <hh, k > h => B^fn) = O (corollary above), the sum is only finite. 
Theorem. If bh"1 <n<bh, k >h, then Rk(n) = Rh(n) = B(n); and B(n) < 2h~1. 
Proof If k > bf no /r-decomposition of n is basic. Thus the algorithm goes all the way: every end term is of the 

form Rs (a), O <a <b, s> 1. Once ail the a < b appear, no more decompositions can appear Each basic decomposi-
tion occurs from unwinding each R?(a), choosing k <b so that s = 1 when the 5 first appears. The inequality is from 
1.3. 
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2. THE CASE/? = 2 

From the algorithm, we see that if neither n nor n + 1 is divisible by b, then their ^-decompositions differ only in 
the first term. Therefore, for simplification we shall assume that b = 2, unless specifically stated otherwise. Of course, 
we restrict n to be odd. 

2.1 By the algorithm, Rk(n) = Rk.7(n - 1) + Rk^(n + 1). Le t /7 - 1 = 2pxm&n + 1 = 2qy,x and y odd. Mote 
that min (p,q) = 1 and that max (p,q) >2fd&n~- 1 and n + 1 are consecutive even integers. 

Definition. Given x, / o d d , if there exists an (odd) n such that Rk(n) = Rk„-}(x) + Rk„i(y), write x *y = n. If 
no such n exists, then x * y is undefined. 

Remark. By the uniqueness of the algorithm, 
(a) x *y = y *x if either exists, and 
(b) x *y = u *v =* \x,y\ = [u,v] . 

2.2 Theorem. Let y be given. If x > y, then x * y exists iff x = 2'y + 1 or x = 2'y - 1 for some / > 1. If so, then 
x*y = 2l+1y+1 or x*y = 2i+1y- 1, respectively. 

Proof. By the algorithm, if x * y is to exist, there must exist p, q > 1 such that 2px - 2qy = +2. By the note 
above, p = 1 and# >2. So x = 2q~1y ± I Let i=q - / > I x *y is the odd integer between 2x and 2qy. So 

x*y = (V2)[2x+2qy] =' (M2(2''y± 1) +2i+1y] = 2H1 ± / . 

Corollary. If GCD (x,y)> 1, then* *y does not exist. In particular, if y> 1, then y *y does not exist. 
2.3 Theorem. 3 * 1 = j 5,7 >. In all other cases, x *y is unique. 

Proof. WLOGx^y . If x *y exists, x = 2'y± I If x *y is not unique, then x must be expressible in two ways, i.e., 

x = 2py + 1 = 2qy - 1 
for some p, q>\. Then 

2Vy - 2py = 2, 2q"1y - 2P~1 y = I 

Since y divides the left side, y = I Then p = 1 and q = 2. So 

x = 21>1+1 = 3 = 22>1-1, and x *y = 22-1 + 1 = 5, x *y = 23-1 - 1 = 7. 

2.4 Theorem. Given A- >3, there exist t w o / , y <x, such thatx *y exists. 
Proof x = 2'y ± 1, so y = (x - 1)/2P and y = (x + 1)/2q

t y odd. These numbers are distinct unless (x - 1)/2P 

= (x + 1)/2q. If so, then sincex - 1, x + 1 are consecutive even numbers, both divisible by some power of 2, x = 3. 
Corollary. If a * b exists, then the integers y, y <a * b, such that (a *b) *y exists are y = a and / = b. 

Proof If 5 *b exists, WLOG a >b. Then a = 2'b± I By the theorem, if (a *b) *y exists, then 

= {a*b)+1 _ (2i+1b±1)+1 = / till 2i+1b±2 \ 
2p 2p J 2p ' 2q f 

= \b,2'b±l\ = \b,a\ . 

Remark. If a = b, by the Corollary of 2.2, a = b= 1, and so y = 1. 
2.5 Theorem. If x *y exists, then exactly one of I x , / , * * / ! is divisible by 3. 

Proof 1*1 = 3. Assume now WLOG t h a t x > / . Sox = 2ly± 1, and* *y = 2l+1y± 1. 
Case 1. Clearly if 3\y, 3 divides neitherx norx *y. 
Case 2. If 3\x, 3 cannot divide/. Assume3\x *y. Then3\(x *y -x), so 

3\(2'+1 y-2'y),3\2'y - a contradiction. 
Case 3. Assume that 3 divides neither x n.or/. To show 3\x *y. 
Case 3a. y = / (mod 3). Since 2' s (-1)' (mod 3), 

x = 2'y± 1 - (-1)' ± 1 (mod 31 

Since x £ 0 (mod 3), i f / is even, we must use the +1, and if /is odd, we must use the - 1 . Then 

x*y = 2i+1y± 1 = (~1)i+1 ± 1 (mod31 x *y = 0 (mod3) 

whether / is even or odd. 
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Case 3b. y^-1 (mod 3). Then 
x EE (-1)i+1 ± 1 (mod 3). 

If / Is even, we use the - 1 ; if / is odd, the +1. So 
x *y = (-1)i+2 ± 7 (mod3) ^ 0 (mod3) 

in both cases. 
2.6. The expression n = x *y can conveniently be expressed visually as 

A • 
x y 

If x or y > 1, it in turn can be written as a ̂ -product. Each n has in this manner associated with it a tree. For exam-
ple, for/7 = 23, the tree is as in Fig. 1. 

23 

H(23) = 5, W(23) = 7 

Figure 1 
Remark. Since x,y < x * y, the numbers decrease down the tree, and every chain ends with 1. The tree associated 

with n, without integers at the nodes, with the longer chain always to the left at every node, will be denoted T(n)., 
2.7 Definition. If the length of the longest chain in the tree is £, then the height of the tree, denoted H(n), is de-

fined by H(n) = 9. + t The number of branches of the tree (= number of times 1 appears) is the width of the tree, 
denoted by W(n). 

Lemma. Let n=x *y, x>y. Then 
(a) H(n) = 1+HM 
(b) W(n) = W(x) + W(y). 

Proof. Obvious from the definition of T(n). 
Theorem. Let2h'1 < n < 2h. Then 
(a) H(n) = h 
(b) W(n) = B(n), the number of basic decompositions 
(c) h < WW < 2h~1 

Proof, (a) If h = 7, H(l) = 1; if h = 2, H(3) = 2. Assume that for all n <2k, the statement is true. Lz\2k <n < 
2k+1. The algorithm starts: Rs(n) = Rs-j(n - 1) + Rs^(n + 1). 

Case 1. n - 7 is divisible by 4. Then n + 1 is not divisible by 4, so 2k < n + 1 < 2k+1. 2k~1 <(n + 1)/2 < 2k. 
By the inductive hypothesis, H((n + 1)/2) = k. By the lemma, H(n) = k+ I 

Case 2. n + 7 is divisible by 4. Then2k <n-1<2k+1;2k~1 < (n - 1)/2 <2k. So Hffn - 1)/2) = k; H(n) * k 
+ 1 

(b) The algorithm produces the numbers at the nodes of the tree. As soon as a 1 appears, the branch 
stops. Starting with ft? (7), following each chain upwards produces each of the basic decompositions. 

(c) The second inequality is the Theorem of 1.7. The first is obvious for n= 1,3. Assume the first inequal-
ity is true for all n <2k. Let2k <n <2k+1. n=x * / fo r some x >y,2k~1 <x <2k. By the inductive hypothe-
sis, W(x) >k. So W(n) = W(x) + W(y) >k+1. 

2.8 Lemma. Let 0 <t < 2h'1, t odd. Then T(2h'1 + t) = T(2h - t). 
Proof. If h = 2, then t = 7. 22"1 + 1 = 3 = 22 - 1; the result is automatically true. If h = 3, then t = 7 or 

3. 23~1 + 7 = 5 and 23 - 7 = 7; while 23~1 + 3 = 7 and 23 - 3 = 5. We know T(5) = T(7). 
Assume that the statement is true for all k < h. Let t be any odd number such that 0 <t <2k. If 2k + t = 2k+1 -1, 

t\\mt = 2k~1; since n's odd, t = k= I 
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Case!, t+1 is divisible by 4. Then 

2k + f = 2k+t+1 , 2k + t-1 

2P 2 

where 2P is the highest power of 2 that divides t+ 1, 2 <p <k. 

and / y / 
2k+1 _ f = 2k+1 -(t+1) x2

k+1-(t-1) = 2k-p+i t+1 \ y 2k t-1 
2P 2 \ 2P J \ 2 

By the inductive hypothesis, 

2k-p + t±l )= T( 2k'p+1 - — - \ 
2P J \ 2

p I 

and 

T[2k-'+t-f!)=T{2k-t^l 

Thus T(2k +1) and T(2k+1 - t) have the same right branch, the same left branch, and therefore are equal. 
Case 2. t - / is divisible by 4. Interchange t - 1, t + 1 in the above proof. 
Theorem. If h > 3, there are 2 " different trees of height h associated with the odd integers. 
Proof. For h = 3, T(5) = T(7), so there is one tree of height 3. Let k > 3. To each*, 2k~1 <x <2kthere exist 

Vl ^Y2r Vi <*, Sl,ch that* *y,- exists. Since H(y^)^ H(y2), T(x *yj)f^ T(x *y2l Therefore the number of trees 
of height k + 1 is at least twice the number of trees of height k. Hence the number of trees of height/? is at least 
yh-3 

Between 2h~1 and 2h there are 2h~2 odd integers. By the lemma, each tree of height /7 is associated with at least 
two integers. Hence the number of trees of height h is at most 2 " . 

2.9 Theorem. W(2h~1 + 1) = W(2h - 1) = h; the minimum possible width of a tree of height h is attained. 
Proof. \\h = 3. W(23'1 + 1) = W(5) = 3. Assu me that W(2k~1 + 1) = k. 

2k +1 = (2k~1 + 1) * l 
It follows that 

W(2k + 1) = W(2k~1 + D + W(1) = k + 1. 

Since W(n) >h \\2h~1 <n <2h, the minimum width is attained. Lastly, by the lemma above, W(2h - 1) = h. 

Theorem, (a) The maximum width of any tree of height/; is Fh+u where F; is the ith Fibonacci number. 
(b) This width is attained for 

n = (2h+1 + (-1)h)/3, h > 1, 
and for 

n = (5-2h~1 + (-1)h"1 )/3, h > 2. 
Proof For h=1, W(1)= 1. Forh = 2, W(3) = 2. For h = 3, W(5) = W(7) = 3. 
(a) For each k, the maximum width is attained by at least two values of n. Call the smallest of these values nkt 

'•e-' I nk \ = \l,3,5, 11, - | . Assume: 
(1) W(rij) = Fi+1, i = 1,2,-,k 
(2) nk = nk^ * n k „ 2 - The two inductive hypotheses are true for k = 3. By the Corollary of 2.4, nk *nk-i = 

n exists; so 
W(n) = W(nk) + W(nk.1) = Fk+1 + Fk = Fk+2, 

T(n) has as its left branch the widest tree of height k, as its right branch the widest tree of height k - 1. 
Hence Tin) is the widest tree of height k+1, and there is only one such tree. Since n is the smaller inte-
ger whose tree has this width, n = nk+-j. 

(b) Claim: nh =2nh~i + (-1)h. Statement is true for/? = 2. Assume it is true for// = /r. Then 2nk = 4nk^ + 2(-1)k. 
Using the algorithm, we can calculate nk+1 = nk *nk„i. Since 2nk and 4nk-i differ by 2, 
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nk+1 = W[2nk + 4nk-i] = l%H2nk + 2nk- 2(-1)k] = 2nk + (~1)k 

Claim proved. Assume 

By the claim, 

_, _2k+1 + (-Dk 
nk o 

nk+1 - 2[ tl^=lt ) +(-^1 - t^thUtl 
Lastly, if m^ is the larger number such that y\l(m^) = Fh+1, by the Lemma of 2.8, mn + n^ = 2h"1 + 2 . So 

Theorem. If the base is/? > 2, then W((bh - 1)/(h- 1)) = 2h~1; that is, the maximum width attained is the maxi-
mum possible. 
Proof. It is clear that W(b + 1) = W(b + 2) = 2. Assume that W(m) = W(m + 1) = 2k"1 where m = (bk - 1)/(b - 1). 

m * (m+1) = [bm+1, bm +2, •>-, bm + b - l \ 

(from the obvious definition of x *y, i x *y I has at least b - / elements.) So 

W(bm +1) = W(bm +2) = W(m) + W(m + 1) = 2k and bm + 1 = b [ b, ~J ) + 1 = b " 7 

b- 1 J b-1 " 

Remark. Comparison of the preceding two theorems shows why the special case b = 2 is more interesting than the 
general case. The trees for b = 2 are of special type: at any node the two sub-trees are always of unequal heights. 

3. THE PROBLEM OF WIDTHS 
3.1 Theorem.-?|W/^iff3|/i. 

Proof. 1/1/(1) = 1 and W(3) = 2. Assume the statement is true for all n < k. Consider W(k + 11 Let k + 1 =x * y. 
Case 1. k + 1 is divisible by 3. By the Theorem of 2.5, neitherx nory is divisible by 3. By the inductive hypothe-

sis W(x) and W(y) are odd. Hence W(k + 1) = W(x) + W(y) is even. 
Case 2. k + 1 is not divisible by 3. Then one of x,y is. So W(k + 1) = even + odd = odd. 
3.2. An interesting but unsolved question is the following: given w, find all (odd) n such that W(n) = w. 
If n > 2W, then H(n) > w, so W(n) > w (Theorem of 2.7). Thus all solutions n satisfy n < 2W. At least one pair of 

solutions always exists, because 
W(2W~1 + 1) = W(2W- 1) = w 

(first Theorem of 2.9). From the theorem above it appears that there should be fewer solutions for w even than for 
w odd. An examination of a short table of solutions, found by the algorithm, shows little regularity. 
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