A MAXIMUM VALUE FOR THE RANK OF APPARITION OF INTEGERS IN RECURSIVE SEQUENCES

H. J. A. SALLE

Laboratory of Medical Physics, University of Amsterdam, Herengracht 196, Holland

We define the sequence R_0 , R_1 , R_2 , \cdots by the recursive relation

$$R_{n+1} = aR_n + bR_{n-1}$$

in which b = 1 or -1; a and the discriminant $\Delta = a^2 + 4b$ are positive integers. In addition, we have the initial conditions $R_0 = 0$ and R_1 may be any positive integer. We now state the following:

Theorem. The rank of apparition of an integer M in the sequence R_0, R_1, R_2, \cdots does not exceed 2M.

Proof First we observe that R_1 divides all terms of the sequence. If the theorem holds for the sequence

$$0 = \frac{R_0}{R_1} , \quad 1 = \frac{R_1}{R_1} , \frac{R_2}{R_1} , \cdots$$

then it apparently holds for the sequence R_0 , R_1 , R_2 , \cdots . Therefore we may suppose in what follows, that $R_1 = 1$. Let M be a positive integer

$$M = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

Here p_1, p_2, \dots, p_k denote the different primes of M and a_1, a_2, \dots, a_k their powers. To each p_i ($i = 1, 2, \dots, k$) we assign a number s_i :

 $s_i = p_i \pm 1$ if p_i is odd and $p_i \not\mid \Delta$; the minus sign is to be taken if Δ is a quadratic residue of p_i and plus sign if it is a nonresidue

$$s_i = p_i$$
 if p_i is odd and $p_i | \Delta$.
 $s_i = 3$ if $p_i = 2$ and Δ odd.
 $s_i = 2$ if $p_i = 2$ and Δ even.

Let *m* be any common multiple of the numbers $s_1 p_1^{\alpha_1-1}$, $s_2 p_2^{\alpha_2-1}$, ..., $s_k p_k^{\alpha_k-1}$ then $M | R_m$. In the case that *m* constitutes the least common multiple of the mentioned numbers, the proof can be found in Carmichael [1]. From the known property $R_q | R_{nq}$, *n* and *q* denote positive integers, it appears that *m* may be any common multiple (the property $R_q | R_{nq}$ can be found in Bachman [2]).

Now suppose that *M* contains only odd primes p_1, p_2, \dots, p_k with $p_1 \not\mid \Delta, p_2 \not\mid \Delta, \dots, p_k \not\mid \Delta$, then it is not difficult to verify that the product

(1)
$$m = 2 \frac{s_1 p_1^{\alpha_1 - 1}}{2} \frac{s_2 p_2^{\alpha_2 - 1}}{2} \dots \frac{s_k p_k^{\alpha_k - 1}}{2}$$

is a common multiple of the numbers $s_1 \rho_1^{\alpha_1-1}, \dots, s_k \rho_k^{\alpha_k-1}$ and therefore $M | R_m$. It is easy to verify that

$$\frac{m}{M} \leq \frac{4}{3}$$

The extension is easily made to the case where M contains also odd primes q_1, q_2, \dots, q_k with $q_1 | \Delta, \dots, q_k | \Delta$ and /or to the case where M is even.

In the first case we form a common multiple by multiplying (1) with $q_1^{\beta_1}q_2^{\beta_2}\cdots q_q^{\beta_q}$ (the numbers β_1, \cdots, β_q constitute the powers of q_1, \cdots, q_q in M).

A MAXIMUM VALUE FOR THE RANK OF APPARITION **OF INTEGERS IN RECURSIVE SEQUENCES**

$$m \leqslant rac{4}{3}M$$
 if Δ is even
 $m \leqslant 2M$ if Δ is odd.

This completes the proof.

SOME EXAMPLES

The Fibonacci sequence: a = b = 1 $\Delta = 5$ $R_1 = F_1 = 1$. If M = 21 then $p_1 = 3$ $p_2 = 7$ so $s_1 = 4$ $s_2 = 8$ and $m = 2 \cdot \frac{4}{2} \cdot \frac{8}{2} = 16$. 1. Therefore $21|F_{16}$ (in fact $21|F_8$). If $M = 110 = 2 \cdot 5 \cdot 11$ then $m = 3 \cdot 5 \cdot 2 \cdot \frac{10}{2} = 150$ so $110|F_{150}$. The only numbers having a rank of appartition equal to 2M are 6, 30, 150, 750, ... so $6|F_{12}$, $30|F_{60}$, $150|F_{300}$, etc.

2. The Pell numbers: 0, 1, 2, 5, 12, 29, 70, $\dots a = 2$ b = 1 $\Delta = 8$. The numbers 3, 9, 27, ... constitute the only numbers having a rank of apparition equal to $\frac{4}{3}M$. So $3|R_4$, $9|R_{12}$, etc.

In the special case b = -1 the theorem can be strengthened. We use the same notation as before. First we prove the following

Lemma. Let b = -1. If p_i is an odd prime and $p_i \not\mid \Delta$ then

$$p_i | R_{s_i/2}$$

Proof. We suppose again $R_1 = 1$. Next we introduce the auxiliary sequence T_0 , T_1 , T_2 , ... with $T_{n+1} = aT_n - T_{n-1}$ and the initial conditions $T_0 = 2$ $T_1 = a$. The following properties apply: (Proof in Bachmann [2])

1.
$$p_{i|}n_{s_{i}}$$

11. $p_{i|}T_{s_{i}} - 2$

III. $R_{2n} = R_n T_n$ (*n* is a positive integer)

IV. $T_{2n} = T_n^2 - 2$ (*n* is a positive integer). Take $n = s_i/2$ in III and IV. From II and IV it follows

$$p_i \not\in T_{s_i/2}$$

From I and III it then follows $p_i | R_{s_i/2}$. This proves the lemma. Now let M be again an integer

$$M = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

Further let *m* be the product of the numbers

$$(s_i p_i^{\alpha_i - 1})/2$$

respectively $s_i p_i^{\alpha_i - 1}$ (*i* = 1, 2, ..., *k*), where we have to choose the first number if p_i is an odd prime and $p_i \not| \Delta$; the second number if $p_i \mid \Delta$ or $p_i = 2$. By Carmichael's method it can be proved that again $M \mid R_m$. It is easy to verify that $m \le M$ if Δ is even and that $m \le \frac{3}{2}M$ if Δ is odd. So we have found:

The rank of apparition does not exceed M if b = -1 and Δ is even.

The rank of apparition does not exceed $\frac{3}{2}M$ if b = -1 and Δ is odd.

EXAMPLES

PREAMBLE: The equation $X^2 - NY^2 = 1$ in which N constitutes a positive integer, not a square, and X and Y are integers, is called Pell's equation. For given N, an infinite number of pairs X and Y exist, which satisfy the equation. If X_1 and Y_1 constitute the smallest positive solution, all solutions can be found from the recursive relations

$$X_{n+1} = 2X_1X_n - X_{n-1}$$
 $Y_{n+1} = 2X_1Y_n - Y_{n-1}$

with initial conditions $X_0 = 1$, $Y_0 = 0$.

The sequence Y_0, Y_1, Y_2, \cdots does satisfy the conditions of the strengthened theorem. EXAMPLE 1. Let N = 3, so $X^2 - 3Y^2 = 1$ then $X_1 = 2$, $Y_1 = 1$, $\Delta = 12$. The sequence Y_0, Y_1, Y_2, \cdots consists

A MAXIMUM VALUE FOR THE RANK OF APPARITION **OF INTEGERS IN RECURSIVE SEQUENCES**

of the numbers 0, 1, 4, 15, 56, 209, If $M = 110 = 2 \cdot 5 \cdot 11$ then $m = 2 \cdot \frac{6}{2} \cdot \frac{10}{2} = 30$ so $110 | Y_{30}$. If $M = 18 = 2 \cdot 3^2$ then $m = 2 \cdot 3^2 = 18$ so $18|Y_{18}|$. EXAMPLE 2. $X^2 - 2Y^2 = 1$ then $X_1 = 3$, $Y_1 = 2$, $\Delta = 32$.

The sequence Y₀, Y₁, Y₂, ... consists of the numbers 0, 2, 12, 70, ... (which are Pell numbers with even subscript). The rank of apparition of any number M is less than M.

REMARK

If $b \neq +1$ the theorem will generally not be valid; e.g., on taking a = 4, b = 6, $R_1 = 1$ any number M containing the factor 3 will not divide a member of the sequence.

REFERENCES

- 1. R.D. Carmichael, "On the Numerical Factors of the Arithmetic Forms $a^n + \beta^n$," Annals of Mathematics, Vol. 15, 1913, pp. 30-48.
- 2. P. Bachmann, "Niedere Zahlentheorie," 2^{er} Teil, Leipzig, Teubner, 1910.

FIBONACCI AND LUCAS SUMS IN THE r-NOMIAL TRIANGLE

V.E. HOGGATT, JR., and JOHN W. PHILLIPS San Jose State University, San Jose, California 95192

ABSTRACT

Closed-form expressions not involving $c_n(p,r)$ are derived for

(1)
$$\sum_{n=0}^{p(r-1)} c_n(p,r) f_{bn+j}^m(x)$$
(2)
$$\sum_{n=0}^{p(r-1)} c_n(p,r) g_{bn+j}^m(x)$$

(3)
$$\sum_{n=0}^{p(r-1)} c_n(p,r)(-1)^n f_{bn+j}^m(x)$$

(4)
$$\sum_{n=0}^{p(r-1)} c_n(p,r)(-1)^n \mathfrak{L}_{bn+j}^m(x),$$

where $c_n(p,r)$ is the coefficient of y^n in the expansion of the *r*-nomial $(1 + v + v^{2} + \dots + v^{r-1})^{p}$, $r = 2, 3, 4, \dots$, $p = 0, 1, 2, \dots$,

n=0

and $f_n(x)$ and $\mathfrak{L}_n(x)$ are the Fibonacci and Lucas polynomials defined by

$$f_1(x) = 1, \quad f_2(x) = x, \quad f_n(x) = x f_{n-1}(x) + f_{n-2}(x);$$

$$\mathfrak{L}_1(x) = x, \quad \mathfrak{L}_2(x) = x^2 + 2, \quad \mathfrak{L}_n(x) = x \mathfrak{L}_{n-1}(x) + \mathfrak{L}_{n-2}(x).$$

Fifty-four identities are derived which solve the problem for all cases except when both b and m are odd; some special cases are given for that last possible case. Since $f_n(1) = F_n$ and $\mathfrak{L}_n(1) = L_n$, the n^{th} Fibonacci and Lucas numbers respectively, all of the identities derived here automatically hold for Fibonacci and Lucas numbers. Also, $f_n(2)$ = P_n , the n^{th} Pell number. These results may also be extended to apply to Chebychev polynomials of the first and second kinds.

The entire text of this 51-page paper is available for \$2.50 by writing the Managing Editor, Brother Alfred Brousseau, St. Mary's College, Moraga, California 94575.

1975]