A MAXIMUM VALUE FOR THE RANK OF APPARITION OF INTEGERS IN RECURSIVE SEQUENCES

H. J. A. SALLE
Laboratory of Medical Physics, University of Amsterdam, Herengracht 196, Holland

We define the sequence $R_{0}, R_{1}, R_{2}, \cdots$ by the recursive relation

$$
R_{n+1}=a R_{n}+b R_{n-1}
$$

in which $b=1$ or $-1 ; a$ and the discriminant $\Delta=a^{2}+4 b$ are positive integers. In addition, we have the initial conditions $R_{0}=0$ and R_{1} may be any positive integer. We now state the following:

Theorem. The rank of apparition of an integer M in the sequence $R_{0}, R_{1}, R_{2}, \cdots$ does not exceed $2 M$.
Proof First we observe that R_{1} divides all terms of the sequence. If the theorem holds for the sequence

$$
0=\frac{R_{0}}{R_{1}}, \quad 1=\frac{R_{1}}{R_{1}}, \frac{R_{2}}{R_{1}}, \cdots
$$

then it apparently holds for the sequence $R_{0}, R_{1}, R_{2}, \cdots$. Therefore we may suppose in what follows, that $R_{1}=1$.
Let M be a positive integer

$$
M=p_{1}^{\alpha_{1}} p_{a}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}
$$

Here $p_{1}, p_{2}, \cdots, p_{k}$ denote the different primes of M and $a_{1}, a_{2}, \cdots, a_{k}$ their powers. To each $p_{i}(i=1,2, \cdots, k)$ we assign a number s_{i} :

$$
s_{i}=p_{i} \pm 1 \text { if } p_{i} \text { is odd and } p_{i} \not \backslash \Delta ;
$$

the minus sign is to be taken if Δ is a quadratic residue of p_{i} and plus sign if it is a nonresidue

$$
\begin{aligned}
& s_{i}=p_{i} \text { if } p_{i} \text { is odd and } p_{i} \mid \Delta . \\
& s_{i}=3 \text { if } p_{i}=2 \text { and } \Delta \text { odd. } \\
& s_{i}=2 \text { if } p_{i}=2 \text { and } \Delta \text { even. }
\end{aligned}
$$

Let m be any common multiple of the numbers $s_{1} p_{1}^{\alpha_{1}-1}, s_{2} p_{2}^{\alpha_{2}-1}, \cdots, s_{k} p_{k}^{\alpha_{k-1}}$ then $M \mid R_{m}$. In the case that m constitutes the least common multiple of the mentioned numbers, the proof can be found in Carmichael [1]. From the known property $R_{q} \mid R_{n q}, n$ and q denote positive integers, it appears that m may be any common multiple (the property $R_{q} \mid R_{n q}$ can be found in Bachman [2]).
Now suppose that M contains only odd primes $p_{1}, p_{2}, \cdots, p_{k}$ with $p_{1} \nmid \Delta, p_{2} \nmid \Delta, \cdots, p_{k} \nmid \Delta$, then it is not difficult to verify that the product

$$
\begin{equation*}
m=2 \frac{s_{1} p_{1}^{\alpha_{1}-1}}{2} \frac{s_{2} p_{2}^{\alpha_{2}-1}}{2} \cdots \frac{s_{k} p_{k}^{\alpha_{k}-1}}{2} \tag{1}
\end{equation*}
$$

is a common multiple of the numbers $s_{1} p_{1}^{\alpha_{1}-1}, \ldots, s_{k} p_{k}^{\alpha_{k}-1}$ and therefore $M \mid R_{m}$. It is easy to verify that $\frac{m}{M} \leqslant \frac{4}{3}$.
The extension is easily made to the case where M contains also odd primes $q_{1}, q_{2}, \cdots, q_{\ell}$ with $q_{1}\left|\Delta, \cdots, q_{\ell}\right| \Delta$ and /or to the case where M is even.
In the first case we form a common multiple by multiplying (1) with $q_{1}^{\beta_{1}} q_{2}^{\beta_{2}} \cdots q_{\ell}^{\beta} \ell$ (the numbers $\beta_{1}, \cdots, \beta_{\ell}$ constitute the powers of q_{1}, \cdots, q_{ℓ} in M).

In the second case we multiply (1) with 2^{γ} if Δ is even and with $3.2^{\gamma-1}$ if Δ is odd (γ is the power of 2 which is contained in M). We now obtain

$$
\begin{aligned}
& m \leqslant \frac{4}{3} M \text { if } \Delta \text { is even } \\
& m \leqslant 2 M \text { if } \Delta \text { is odd. }
\end{aligned}
$$

This completes the proof.

SOME EXAMPLES

1. The Fibonacci sequence: $a=b=1 \quad \Delta=5 \quad R_{1}=F_{1}=1$.

If $M=21$ then $p_{1}=3 p_{2}=7$ so $s_{1}=4 s_{2}=8$ and $m=2 \cdot \frac{4}{2} \cdot \frac{8}{2}=16$.
Therefore 21| $F_{1 G}$ (in fact 21 $\mid F_{8}$).
If $M=110=2 \cdot 5 \cdot 11$ then $m=3 \cdot 5 \cdot 2 \cdot \frac{10}{2}=150$ so $110 \mid F_{150}$.
The only numbers having a rank of apparition equal to $2 M$ are $6,30,150,750, \ldots$ so $6\left|F_{12}, 30\right| F_{60}, 150 \mid F_{300}$, etc.
2. The Pell numbers: $0,1,2,5,12,29,70, \ldots a=2 b=1 \Delta=8$.

The numbers $3,9,27, \cdots$ constitute the only numbers having a rank of apparition equal to $\frac{4}{3} M$. So $\left.3\right|_{R_{4}} g \mid R_{12}$, etc.

In the special case $b=-1$ the theorem can be strengthened. We use the same notation as before. First we prove the following
Lemma. Let $b=-1$. If p_{i} is an odd prime and $p_{i} \nmid \Delta$ then

$$
p_{i} \mid R_{s_{i} / 2}
$$

Proof. We suppose again $R_{1}=1$. Next we introduce the auxiliary sequence $T_{0}, T_{1}, T_{2}, \cdots$ with $T_{n+1}=a T_{n}-T_{n-1}$ and the initial conditions $T_{0}=2 T_{1}=a$. The following properties apply: (Proof in Bachmann [2])

$$
\begin{aligned}
& \text { I. } p_{i} R_{s_{i}} \\
& \text { II. } p_{i} \mid T_{s_{i}}-2
\end{aligned}
$$

III. $R_{2 n}=R_{n} T_{n}$ (n is a positive integer)
IV. $T_{2 n}=T_{n}^{2}-2$ (n is a positive integer).

Take $n=s_{i} / 2$ in III and IV. From II and IV it follows

$$
p_{i} \nmid T_{s_{i} / 2} .
$$

From I and III it then follows $p_{i} \mid R_{s_{i} / 2}$. This proves the lemma. Now let M be again an integer

$$
M=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}
$$

Further let m be the product of the numbers

$$
\left(s_{i} p_{i}^{\alpha_{i}-1}\right) / 2
$$

respectively $s_{i} p_{i}^{\alpha_{i}-1} \quad(i=1,2, \cdots, k)$, where we have to choose the first number if p_{i} is an odd prime and $p_{i} \chi \Delta$; the second number if $\left.p_{i}\right|^{\Delta}$ or $p_{i}=2$. By Carmichael's method it can be proved that again $M \mid R_{m}$.
It is easy to verify that $m \leqslant M$ if Δ is even and that $m \leqslant \frac{3}{2} M$ if Δ is odd. So we have found:
The rank of apparition does not exceed M if $b=-1$ and Δ is even.
The rank of apparition does not exceed $\frac{3}{2} M$ if $b=-1$ and Δ is odd.
EXAMPLES
PREAMBLE: The equation $X^{2}-N Y^{2}=1$ in which N constitutes a positive integer, not a square, and X and Y are integers. is called Pell's equation. For given N, an infinite number of pairs X and Y exist, which satisfy the equation. If X_{1} and Y_{1} constitute the smallest positive solution, all solutions can be found from the recursive relations

$$
x_{n+1}=2 X_{1} X_{n}-x_{n-1} \quad Y_{n+1}=2 X_{1} Y_{n}-Y_{n-1}
$$

with initial conditions $X_{0}=1, Y_{0}=0$.
The sequence $Y_{0}, Y_{1}, Y_{2}, \cdots$ does satisfy the conditions of the strengthened theorem.
EXAMPLE 1. Let $N=3$, so $X^{2}-3 Y^{2}=1$ then $X_{1}=2, Y_{1}=1, \Delta=12$. The sequence $Y_{0}, Y_{1}, Y_{2}, \cdots$ consists
of the numbers $0,1,4,15,56,209, \ldots$. If $M=110=2 \cdot 5 \cdot 11$ then $m=2 \cdot \frac{6}{2} \cdot \frac{10}{2}=30$ so $110 \mid Y_{30}$. If $M=18=2 \cdot 3^{2}$ then $m=2 \cdot 3^{2}=18$ so $18 \mid Y_{18}$.
EXAMPLE 2. $X^{2}-2 Y^{2}=1$ then $X_{1}=3, Y_{1}=2, \Delta=32$.
The sequence $Y_{0}, Y_{1}, Y_{2}, \cdots$ consists of the numbers $0,2,12,70, \cdots$ (which are Pell numbers with even subscript). The rank of apparition of any number M is less than M.

REMARK
If $b \neq \pm 1$ the theorem will generally not be valid; e.g., on taking $a=4, b=6, R_{1}=1$ any number M containing the factor 3 will not divide a member of the sequence.

REFERENCES

1. R.D. Carmichael, " $O n$ the Numerical Factors of the Arithmetic Forms $a^{n} \pm \beta^{n}$, " Annals of Mathematics, Vol. 15, 1913, pp. 30-48.
2. P. Bachmann, "Niedere Zahlentheorie," $2^{\text {er }}$ Teil, Leipzig, Teubner, 1910.

*

FIBONACCI AND LUCAS SUMS IN THE r-NOMIAL TRIANGLE

V.E. HOGGATT, JR., and JOHN W. PHILLIPS
 San Jose State University, San Jose, California 95192

ABSTRACT

Closed-form expressions not involving $c_{n}(p, r)$ are derived for

$$
\begin{equation*}
\sum_{n=0}^{p(r-1)} c_{n}(p, r) f_{b n+j}^{m}(x) \tag{1}
\end{equation*}
$$

$$
p(r-1)
$$

$$
\begin{equation*}
\sum_{n=0} c_{n}(p . r)_{b n+j}^{m}(x) \tag{2}
\end{equation*}
$$

(3)

$$
\begin{aligned}
& \sum_{n=0}^{p(r-1)} c_{n}(p, r)(-1)^{n} f_{b n+j}^{m}(x) \\
& \sum_{n=0}^{p(r-1)} c_{n}(p, r)(-1)^{n}{ }_{l}^{b n+j} m
\end{aligned}
$$

where $c_{n}(p, r)$ is the coefficient of y^{n} in the expansion of the r-nomial

$$
\left(1+y+y^{2}+\cdots+y^{r-1}\right)^{p}, \quad r=2,3,4, \cdots, \quad p=0,1,2, \cdots,
$$

and $f_{n}(x)$ and $\ell_{n}(x)$ are the Fibonacci and Lucas polynomials defined by

$$
\begin{array}{ccc}
f_{1}(x)=1, & f_{2}(x)=x, & f_{n}(x)=x f_{n-1}(x)+f_{n-2}(x) \\
\ell_{1}(x) \stackrel{\circ}{=} x, & \ell_{2}(x)=x^{2}+2, & \ell_{n}(x)=x \ell_{n-1}(x)+\ell_{n-2}(x) .
\end{array}
$$

Fifty-four identities are derived which solve the problem for all cases except when both b amd m are odd; some special cases are given for that last possible case. Since $f_{n}(1)=F_{n}$ and $\ell_{n}(1)=L_{n}$, the $n^{\text {th }}$ Fibonacci and Lucas numbers respectively, all of the identities derived here automatically hold for Fibonacci and Lucas numbers. Also, $f_{n}(2)$ $=P_{n}$, the $n^{\text {th }}$ Pell number. These results may also be extended to apply to Chebychev polynomials of the first and second kinds.
The entire text of this 51 -page paper is available for $\$ 2.50$ by writing the Managing Editor, Brother Alfred Brousseau, St. Mary's College, Moraga, California 94575.

