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A great deal of literature has been published on the compositions of integers. In this paper, we attempt to throw 
some new light by discussing compositions which lead to recurrence relations. Actually, in this article we restrict our 
attention to compositions using only ones and twos. Compositions using 1, 2, and 3, •••, or 1 and 3 will lead to more 
general recurrences, but this will form the subject of later investigations. 

Definition 1. Denote by Cn for positive integral n, the number of compositions of/? using only 1 and 2. 
We make the convention that whenever we refer to the word "composition" in this paper, we mean compqsitions 

with 1 and 2 unless specially mentioned. 
Examples: 

n Compositions of n Cn 

1 1 1 
2 2, 1 +1 2 
3 2 + 1,1+2,1 + 1 + 1 3 
4 2 + 2,2 + 1 +1,1+2 + 1,1 + 1+2,1 + 1 +1 + 1 5 
5 2 + 2 + 1,2 + 1+2,1+2 + 2,2 + 1 + 1 + 1, 8 

1+2 + 1 + 1, 1 + 1+2 +1,1 + 1+1+2, 
1 + 1 + 1 + 1 + 1 

The Fibonacci enthusiast will immediately recognize the Fibonacci number pattern in the sequence Cn. So we have 
Theorem 1. Cn = Fn+1, n = 1,2,3, - , 

where the Fn are the Fibonacci numbers, 
Fn+2 = Fn+1+Fn> F1 = F2 = I 

Proof!. St is quite clear from the table that Theorem 1 holds for n = 1,2, —, 5. Let Cm( 1) and Cm(2) denote 
the number of compositions of m that end in 1 or 2, respectively. We then have, trivially, 
(1) Cn+1 = Cn+1(1) + Cn+1(2). 

Pick a composition of (n + 1), ending in a one. If we remove the one at the end, we get a composition of n. Con-
versely, to a composition of n by adding a one at the end we get a composition for (n + 1). Therefore, 
(2) Cn+1(1) = C„. 

Now consider a composition of (n + 1) ending in a two. If we remove the two at the end, we get a composition for 
(n T- 1)- Conversely, we could get a composition for (n + 1) from (n - 1), by adding a two or two ones. The latter 
case has been counted by (2) and so we have 
(3) Cn+1(2) = C„-i . 
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Now, (2) and (3) together with (1) establish Theorem 1 by induction. 
Proof 2. Consider the generating function 

(4) CM ~ X+K 

1-(x+x2) 
Clearly, 

oo oo 

CM = £ (*+x2)n*1 = Y, (x+x2>n • 
n=0 n=1 

If we now collect the terms with exponent /?, we get Cn terms! This gives 
oo 

CM = £ *»*" • 
n=1 

But we also find from (4) that 
oo oo 

CM = 1 - - 1 = £ Fn*n'1 ~ 1 = E Fn+1*" = E Cn*n • 
1-(x + X2! n=1 n=1 n=1 

This proves that Cn = Fn+i, establishing Theorem 1. 
Let fx (n) and f2 (n) denote the number of ones and the number of twos in the compositions, respectively. Let pfn) 

denote the number of " + " signs that occur in the compositions of n. 
Theorem 2. 

fl(n + 1) = fi(n) + ff(n - 1) + Fn + 1, f2(n + 1) = f2(n) + f2(n - 1) + Fn . 
Proof. Split all the compositions of (n + 1) as 

Cn+1 = Cn+i(1) + Cn+i(2). 

Since Cn+j (2) = Cn-i, we have // fn - 1) ones since a "2" is not going to affect the counting of ones. We have also 
by (2) that Cn+i(1) = Cn, and we have an extra "V in each composition counted by Cn+i(1). So we have counted 
// (n) + Cn ones, proving 

fl(n + 1) = fi(n) + ff(n-1) + Fn+1. 

Now, going back to Cn+i (1) and Cn+112) and using (3) and (2), we can get by similar arguments that 
f2(n + 1) = f2(n) + f2(n-1) + Fn. 

This proves Theorem 2. 
Theorem 3. f2(n + 1) = fj(n). 
Proof One can verify Theorem 3 for n = 1,2, 3. Now, by Theorem 2, we have 

(5) f,(n) = f1(n-1) + f1(n-2) + Fn, 

(6) f2(n + 1) = f2(n)+f2(n-1) + Fn. 

Now, Eqs. (5) and (6) establish Theorem 3 by induction. 
Theorem 4. The sequence fjfn) is the Fibonacci convolution sequence. 
Proof By induction and from Theorem 2. 
Theorem 5. The sequence pfn) is the convolution sequence of Cn. 

Proof First let us find the generating functions of the sequence fx fn) and f2 fn). We have by Theorem 3 and Theo-
rem 4 that 

oo 

E flM*" = ~ T 
n=1 [1-U+X*)]2 

and 
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„tv n-(x+x*)]2 

From the definition of p(n) it trivially follows that 
(7) p(n) = f1(n) + f2(n)-Cn 

so that we have by (7) that 

V p(n)xn = x + x2 x+x2 = (x +x2) ~ (x +x2H1 ~ (* +x2H 
n=1 [1-(x+xV]2 f1-(x+x2)]2 1-(x+x2) [1-(x+x2)]2 

= 7~¥~7T = Mx)]2 

n-(x+xvj2 

proving Theorem 5. 
We next shift our attention to compositions with special properties. A composition of n is defined to be "palin-

dromic" if written in reverse order it remains unchanged. 
Examples: 1 -4-2 + 2 + 1 isa palindromic composition of 6 while 1 + 2 + 1 + 2 is not. 
Let U(n) denote the number of palindromic compositions of n, E(n,1) the number of those ending with 1,and 

E(n,2) the number of those ending with 2. Let EJn) and EJn) denote the number of ones and the number of twos 
in all the palindromic compositions of n, respectively. Let U+(n) denote the number of "+" signs in the palindromic 
compositions of n. 

Theorem 6. E(n + 1) = E(n - 1) + U(n - 3), 
and the sequence E(n) is an alternation of Fibonacci sequences 

1,2,1,3,2,5,3,8,5,13,8,-. 
To be more precise, 

H(2n + 1) = Fn, E(2n) = Fn+2. 

Proof. We can split 
(8) E(n + 1) = IIfo+ 7, 1) + E(n + 1,2). 
Since U(n + 7, 1) counts the palindromic compositions ending in a 1, by removing the 1'son both sides we geta pal-
indromic composition for (n - V. So we have 
(9) Ylfn + l 1) = E(n- 1) 
and 
(10) E(n + 1,2) = E(n-3) 
by similar arguments. Now (9), (10) and (8) together yield Theorem 6. The II-functions als*o obey 

1) 
Examples: 

n 
1 
2 
3 
4 
5 
6 

U(n+2) = E(n + 1) + (-1)nE(n). 

Palimdromic Compositions of n 
1 

2,1 + 1 
1 + 1 + 1 

2 + 2, 1+2 + 1,1+1+1+1 
2 + 1 +2,1 + 1 + 1 + 1 + 1 

2 + 2 + 2,2 + 1+1+2 ,1+2 + 2 + 1, 
1 + 1+2 + 1 + 1,1 +1+1 +1 + 1 + 1 

E(n) 
1 
2 
1 
3 
2 
5 

We now define enumerating polynomials on the above compositions. For a certain n, <pn(x) contains the term 
'ax if there are "a" compositions with "/?" + signs. The sequence of polynomials (f>n (x) is: 
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/, x + 1, x2
f x3+2x2+x, x2(x2+1), x5+x4 + 2x3 + x2, -

obeying the recurrence 
(12) < W M = x2[(l)n(x) + (l)n-2M] 

and this is quite obvious, for 
(13) , $n+2(x) = mn+2). 
Theorem 7. 

(14) U+(n+2) = Il+(n) + Il+(n -2)+2ll(n +2), 
(15) UJn+2) = UJnJ + UJn-2) + 2Ii(n), 
(16) U2(n+2) = H2(n) + Tl2(n-2)+2Yl(n-2). 

Proof. First we prove (14). From the definition of 6n(x) it is evident that 
d<j>n(x) 

dx 
By (12) we have 

d<t>n+2M 

= Tl+(n) 
atx=1 

^2[^^^^]^^w^-^' dx 

Now, using (13) and Theorem 6 we get 
Il+(n+2) - Il+(n) + Il+(n - 2) +2Il(n +2). 

We prove (15) and (16) combinatorial^. Split the compositions of (n +2) as 
Tl(n+2) = IKn+2,1} + Il(n+2,2). We know 

II(n+2, 1) = E(n), and U(n +2, 2) = Ii(n - 2). 
Now, in the compositions counted by U(n +2,2), the extra 2 does not affect the counting of 1's. Therefore, we have 
counted 11//? - 2) "ones." The compositions counted by H(n + 2, 1) contain two extra ones, compared to those 
counted by I I (n), and so we count EJn) + 2U (n) ones. This proves 

Yljn + 2) = Iljn) + UJn-2)+ 211 (n) . 
By the same arguments we find the compositions counted by U(n +2, 1) contains the same number of twos as 

those counted by H(n) and so we have counted J^tn) twos. But the compositions counted by U(ri +2,2) contain 
two extra 2's compared to those counted by H(n - 2) giving HJn -2)+2H(n - 2). Putting these together, 

I^fn+2) = U2(n) + R1(n-2)+2Il(n-2). 
Theorem 8. 

(17) Il+(n) = U+(n-1) + (-ir2Tl(n-2) + U(n), 

(18) UJn + 1) = njnl + t-D^JlJn-D + JKn), 

(19) 1\(n+2) = njn + 1) + (-1)nUJn) + (-1)nll(n). 

Proof. We know by Theorem 7 that the following hold: 
n+(n+2)-n+(n)-ll+(n-2i = 2Il(n+2) 

Il+(n+1)-n+(n-1)-Il+(n-3) = 2E(n + V 

Il+(n) -YL+(n - 2) -U+(n - 4) = 2U(n) . 
We also know that the Il-functions satisfy 

TL+(n+2) = Il+(n + 1) + (-1)nJl(n). 

If we put these together we get 
n+(n+2)-n+(n)-U+(n-2) = U+(n + 1)-n+(n-1)-tt+(n-3) + (~l)n^ 
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Assume that for a fixed n, (14) holds for n and (n - 2). This means that we get from the above the following: 

Il+(n + 2)-E+(n - 1)-(-l)n-2U+(n -h2)-E(n) - Il+(n -3)- (-1)n~4E+(n -4) - Il(n-2) 
= E+(n + 1) - Il+(n -1)- E+(n -3) + (-1)n [E+(n) - U+(n -2)- E+(n - 4)] 

which simplifies to 
E+(n+2) = E+(n + 1) + l-1)nE+(n) + E(n+2) 

establishing (17) for (n +2). Now one can verify (17) for/? = 0,1,2,-^,5, and so (17) holds by induction. 
Now, to prove (18), we observe from Theorem 7 that 

EJn +2)- EJn) - EJn - 2) = 2U(n) 
EJn + 1)- EJn -1)- EJn - 3) = 2E(n - 1) 

EJn) ~ EJn-2)-EJn-4) = 2E(n-2). 
If we again use (11) we find 

EJn +2)- EJn) - EJn - 2) = EJn + 1)- EJn -1)~ EJn - 3) + (- 1)n[EJn) - EJn - 2) - EJn - 4)J . 
Now, if we assume that for a fixed n, Eq. (18) holds for (n - 2) and n, then we have 

EJn +2)-EJn - 1)- (-1)n"2EJn -2)- EJn - 1)-EJn - 3) - (-1)nEJn - 4)-E(n - 3) 
= EJn + 1)- EJn - 1) - EJn -3) + (- 1)n[EJn) - EJn -2)- EJn - 4)] 

which simplifies to 

EJn+2) = EJn+1) + (-1)nEJn)+E(n + 1) 
establishing (18) for (n + 2). Again one can verify (18) for n = 1, 2, 3, 4, 5, and so (18) holds by induction for all 
positive integral n. 

We prove (19) with the aid of (17) and (18). From the definitions of Ei, EL,, and 0+we get 

Ujn) = E+(n) + E(n)-EJn). 
If (19) were to hold, we must have 

E+(n +2) + E(n +2)- EJn +2) = E+(n + 1) + E(n + 1)-Ex(n + 1) 
+ (-1)n[E+(n) + E(n)-EJn)] +M)nE(n). 

Since (17) and (18) holds, we have 

E+(n + 1) + (-1)nE+(n) + E(n +2) + U(n+2)- EJn + 1) - (-1)nEJn) - E(n + 1) 
= E+(n + 1) + E(n + 1) - EJn + 1) + (-l)n[E + (n) + E(n)- EJn)] + (-l)nE(n) 

which reduces to 
2E(n+2) = 2E(n + V+2(-1)nE(n), 

which we know is true. This establishes (19) and so Theorem 8. Note that we could have proved (19) in the same 
way as we did (17) and (18). 

Definitions. If in a composition of A, a 2 follows a 1, we say it is a "rise," and if a 1 follows a 2, it is a " fal l . " 
Two 1's or two 2's contribute a "straight." 

Let R(n), F(n), and Sin) denote the number of rises, falls, and straights, respectively, in the compositions of n. It 
is easy to establish that 
(20) R(n) = Fin) 
and 

p(n) = R(n) + F(n) + S(n). 
Theorem 9. 

R(n+2) = R(n+1) + R(n) + Fn 

and R(n) is the Fibonacci convolution sequence displaced. 
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Proof. Partition the compositions of fn + 2) as 
Cn+2 = On+2(1) + Cnf2(2). 

We know 
Cn+2(1) = Cn+1, and Cn+2f2) = Cn . 

The 1 at the end of the compositions counted by Cn+2(1) will not affect the counting of rises counted in the com-
positions included in Cn+j. But the 2 at the end of the compositions counted by Cn+2(2) will contribute an extra 
rise if and only if the compositions counted by Cn end in a 1. This is true for Cn(1) = Fn compositions. This proves 

(21) Rfn +2) = Rfn + 1) + Rfn) + Fn. 

The form of the recurrence in (21) and induction establishes the second part of Theorem 9. 
Theorem 10. Sfn + 1) = Sfn) + Sfn - 1) + Ln. 1, 

where Ln = Fn+i + Fn_i are Lucas numbers. Further, 

(22) Sfn) = R(n + 1) + R(n- 1). 

Proof. Partition as before 
&n+1 = Cn+i(1) + Cn+i(2). 

We know that Cn+i(1) = Cn. The extra 1 at the end, in the compositions counted by Cn+-j(1) will give an extra 
"straight" if the corresponding composition counted by Cn ends in 1. So we have Cn(1) = Fn extra "straights." 

Now, 
Cn+1 (2) = Cn-1 = Fn* 

and so the 2 at the end of the compositions counted by Cn+i(2) will contribute an extra "straight," if the corres-
ponding compositions counted by £ „_ / ena" in 2. This happens for Cn^(2) = Fn„2 compositions, and so we have 

(23) Sfn + 1) = Sfn) + Fn+S(n -1) + F^2 = Sfn) + Sfn -1) + Ln^ . 

We can establish the second part of Theorem 10 by induction on (22). Let 

Sfn) = Rfn + 1) + Rfn - 1) 

for/7 = 1,2,3,-, m. We know by (23) that 

Sfm + 1) = S(m)+S(m -1) + Lm_7 

which can be split up as 

Sfm + 1) = R(m + 1) + R(m - 1) +Rfm) + Rfm - 2) +Fm+Fm„2. 
This can be grouped as 

Sfm + 1) = Rfm + 1) + Rfm) + Fm + Rfm - 1) + Rfm -2) + Fm_2 

= Rfm+2)+Rfm) 

by Theorem 9, establishing (22) for n = m + t 
This proves the theorem. 
Theorem 11. The sequence Sfn) is a convolution of the Fibonacci and Lucas sequences. 

Proof. One could say that Theorem 11 follows by observing the form of (23). We, however, use generating func-
tions to prove Theorem 11. 

By Theorem 9 we know the "R" to be the displaced Fibonacci convolution sequence. So 
oc oo 

s s(n,x" = 2 [R(n +1> + R(n"1,lxl1 

n=1 n=1 

= X2
 + X^_ = Xfx+K3) = X m X+X2 

[1-fx+x2)]2 [1-fx+x2)]2 [1-(x+x2)]2 1-<x+x2) 1-fx+x2) 

which says that the Sfn) is the convolution of the Fibonacci and Lucas sequences shown below: 
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Lucas (with extra 1): 1,1, 3, 4, 7,11,18, 29, ••• 
Fibonacci: 1, 1,2,3,5, 8, 13 ,21, -

This completes the proof. 
We can actually state a stronger form of Theorem 10. If Sjn) and Sjn) are defined to be the number of 

"straights" counted as 1 + 1 and 2 + 2, respectively, in the compositions of n, then it is obvious that 
S(n) = Sjn) + Sjn). 

We also know 
S(n) = R(n + 1) + R(n). 

It is indeed remarkable that 
Theorem 12. R(n + 1) = Sjn) and R(n) = Sjn) . 

Tables: 

n Cn fjn) fjn) ptn) R(n) S(n) Il(n) Iljn) UJn) Ii+(n) 

1 
2 
3 
4 
5 
6 

1 
2 
3 
5 
8 
13 

1 
2 
5 
10 
20 
38 

0 
1 
2 
5 
10 
20 

0 
1 
4 
10 
22 
63 

0 
0 
1 
2 
5 
10 

0 
1 
2 
6 
12 
25 

1 
2 
1 
3 
2 
5 

1 
2 
3 
6 
6 
14 

0 
1 
0 
3 
2 
8 

0 
1 
2 
6 
6 
17 
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