ON HALSEY'S FIBONACCI FUNCTION

M. W. BUNDER

The University of Wollongongy, Wollongong, N.S.W., Australia

Halsey in [1] defined a Fibonacci function by

$$
\begin{equation*}
F_{u}=\sum_{k=0}^{m}\left[(u-k) \int_{0}^{1} x^{u-2 k-1}(1-x)^{k} d x\right]^{-1} \tag{1}
\end{equation*}
$$

where m is the integer in the range $(u / 2)-1 \leqslant m<(u / 2)$.
This definition was criticized by Parker [2] for (a) being restricted to rational u 's and (b) destroying the relation (2)

$$
F_{u+1}=F_{u}+F_{u-1}
$$

Neither of these criticizms are quite fair. Firstly, there is nothing in Halsey's paper to prevent (1) from defining F_{u} for all real u and secondly (2) is still satisfied for approximately half of the real values of u and it is generalized in the other cases. This we show below.

Firstly, we express F_{u} in the more convenient form given implicitly by Halsey:

$$
\begin{equation*}
F_{u}=\sum_{k=0}^{m}\binom{u-k-1}{k} \tag{3}
\end{equation*}
$$

where ($u / 2$) $-1 \leqslant m<(u / 2)$ and m is an integer.
Now if $(u / 2)-1 / 2 \leqslant m<(u / 2)$, then

$$
\frac{u+1}{2}-1 \leqslant m<\frac{u}{2}<\frac{u+1}{2}
$$

so that

$$
F_{u+1}=\sum_{k=0}^{m}\binom{u+1-k-1}{k}
$$

with the same m.
Also,

$$
\frac{u-1}{2}-1 \leqslant m-1<\frac{u}{2}-1<\frac{u-1}{2}
$$

so that

$$
F_{u-1}=\sum_{k=0}^{m-1}(u-1-k-1)
$$

also with the same m.
Now

$$
\begin{aligned}
F_{u+1}-F_{u} & =\sum_{k=1}^{m} \frac{(u-k)!}{(u-2 k)!k!}-\frac{(u-k-1)!}{(u-2 k-1)!k!}=\sum_{k=1}^{m} \frac{(u-k-1)!}{(u-2 k)!(k-1)!} \\
& =\sum_{q=0}^{m-1} \frac{(u-1-q-1)!}{(u-1-2 q-1)!q!}, \text { where } q=k-1 \\
& =\sum_{q=0}^{m-1}\binom{u-1-q-1}{q}=F_{u-1} .
\end{aligned}
$$

If on the other hand $(u / 2)-1 \leqslant m<(u / 2)-1 / 2$, then

$$
\frac{u+1}{2}-1<\frac{u}{2}<m+1<\frac{u+1}{2}
$$

so that

$$
F_{u+1}=\sum_{k=0}^{m+1}\binom{u+1-k-1}{k}
$$

where we are still using m as in (3).
Now

$$
\begin{aligned}
F_{u+1}-F_{u} & =\binom{u-m-1}{m+1}+\sum_{k=1}^{m} \frac{(u-k)!}{(u-2 k)!k!}-\frac{(u-k-1)!}{(u-2 k-1)!k!} \\
& =\binom{u-m-1}{m+1}+\sum_{q=0}^{m-1}\binom{u-1-q-1}{q} \text { as before } \\
& =\binom{u-m-1}{m+1}-\binom{u-1-m-1}{m}+F_{u-1}=F_{u-1}+\frac{(u-m-1)!}{(u-2 m-2)!(m+1)!}-\frac{(u-m-2)!}{(u-2 m-2)!m!} \\
& =F_{u-1}+\frac{(u-m-2)!}{(u-2 m-3)!(m+1)!}=F_{u-1}+\binom{u-m-2}{m+1} .
\end{aligned}
$$

Thus we have for $2 m<u \leqslant 2 m+1$ that (2) applies and for $2 m+1<u \leqslant 2 m+2$
(5)

$$
F_{u+1}=F_{u}+F_{u-1}+\binom{u-m-2}{m+1}
$$

where m is an integer.
Equation (5) also reduces to (2) when u is an integer and is also verified by Halsey's tables for F_{u}.

REFERENCES

1. Eric Halsey, "The Fibonacci Number F_{u} where u is not an Integer," The Fibonacci Quarterly, Vol. 2, No. 2 (April 1965), pp. 147-152.
2. Francis D. Parker, "A Fibonacci Function," The Fibonacci Quarterly, Vol. 6, No. 1 (Feb. 1968), pp. 1-2.
