PRODUCTS AND POWERS

M. W. BUNDER
 The University of Wollongong, Wollongong, N.S.W., Australia

The generalized Fibonacci sequence is defined by

$$
\begin{equation*}
w_{n}=p w_{n-1}+q w_{n-2} \tag{1}
\end{equation*}
$$

with

$$
w_{O}=a \quad \text { and } \quad w_{f}=b .
$$

In Horadam's notation [1], w_{n} is written $w_{n}(a, b ; p,-q)$.
In this note we see what happens when we replace the sum and products in (1) by a product and powers; i.e.,
(2)

$$
z_{n}=z_{n-1}^{p} \cdot z_{n-2}^{q}
$$

with

$$
z_{0}=a \quad \text { and } \quad z_{1}=b .
$$

(We can write z_{n} as $z_{n}(a, b ; p, q)$.)
The sequence becomes $a, b, a b, a b^{2}, a^{2} b^{3}, a^{3} b^{5}, a^{5} b^{8}, \ldots$ in the case where $p=q=1$ so that

$$
z_{n}(a, b ; 1,1)=a^{F_{n-1}} \cdot b^{F_{n}}
$$

The general case gives the sequence

$$
a, b, a^{p} b^{q}, a^{p q}, b^{p+q^{2}}, a^{p^{2}+p q^{2}}, b^{2 p q+q^{3}}, \cdots
$$

with

$$
z_{n}(a, b ; p, q)=a^{w_{n}(1,0 ; p,-q)} \cdot b^{w_{n}(0,1 ; p,-q!} .
$$

REFERENCE

1. A.F. Horadam, "Generating Functions for Powers of a Certain Generalized Sequence of Numbers," Duke Math. Journal., Vol. 32, No. 3, pp. 437-446, Sept. 1965.

为

