A SPECIAL CASE OF THE GENERALIZED FIBONACCI SEQUENCE OVER AN ARBITRARY RING WITH IDENTITY

M. W. BUNDER

The University of Wollongong, Wollongong, N.S.W., Australia

DeCarli [1] introduced the sequence $\{M_n\}$ of elements of an arbitrary ring with identity S by

$$M_{n+2} = A_1 M_{n+1} + A_0 M_n$$
 for $n \ge 0$,

where M_0 , M_1 , A_0 and A_1 are arbitrary elements of S. He considers in particular the case which he calls the sequence $\{F_n\}$ with

 $F_{n+2} = A_1 F_{n+1} + A_0 F_n \quad \text{for} \quad n \ge 0,$

where $F_0 = 0$ (the zero of the ring) $F_1 = I$ (the identity) and A_0 and A_1 are arbitrary elements of S. A number of DeCarli's theorems can be simplified in the special case where $A_0A_1 = A_1A_0$. We use the following theorems which are easily proved by induction.

Theorem 1.	$A_0F_n = F_nA_0,$	$A_1F_n = 1$	F _n A₁ for	all <i>n.</i>
Theorem 2.	$F_n F_m = F_m F_n$	for all	<i>m</i> and <i>n</i> .	

Thus DeCarli's Theorem 3

$$F_nF_{n+r} - F_{n+r}F_n = F_nF_rA_0F_{n-1} - F_{n-1}A_0F_1F_n$$

becomes trivial.

Also we can prove that F_n commutes with any element of S which commutes with A_0 and A_1 . In particular when A_0 and A_1 commute with all elements of S so does F_n .

The two parts of DeCarli's Corollary 1 can thus be rewritten as

$$F_{n+1}F_{n-1} - F_n^2 = A_0(F_{n-1}^2 - F_nF_{n-2}).$$

In the same way as above for the general sequence, if M_0 , M_1 , A_0 and A_1 all commute with each other then all M_0 's commute with each other and with A_0 and A_1 .

REFERENCE

D.J. DeCarli, "A Generalized Fibonacci Sequence Over an Arbitrary Ring," *The Fibonacci Quarterly*, Vol. 8, No. 2 (March 1970), pp. 182–184.
