FIBONACCI MULTI-MULTIGRADES

DONALD C. CROSS
St. Luke's College, Exeter, England

Readers of The Fibonacci Quarterly will probably be familiar with multigrades. Here are two examples:
(1)

$$
1^{m}+6^{m}+8^{m}=2^{m}+4^{m}+9^{m} \quad(m=1,2)
$$

and
(2)

$$
1^{m}+5^{m}+8^{m}+12^{m}=2^{m}+3^{m}+10^{m}+11^{m} \quad(m=1,2,3) .
$$

The first example is called a second-order multigrade; the second example, a third-order multigrade.
Adding, subtracting, multiplying and dividing do not affect the equality of a multigrade, provided we perform the same operation or operations on each element in it. For example, Eq. (1) above becomes

$$
2^{m}+7^{m}+9^{m}=3^{m}+5^{m}+10^{m}
$$

where $m=1,2$, if we add 1 to each element; Eq. (2) becomes

$$
2^{m}+10^{m}+16^{m}+24^{m}=4^{m}+6^{m}+20^{m}+22^{m}
$$

where $m=1,2,3$, if we multiply each element by 2 .
This note is concerned with what I call second-order Fibonacci multi-multigrades. (I define [1] a multi-multigrade as a multigrade having three or more "components" as compared with the normal two "components" in a multigrade as in (1) and (2) above.)
Here are some examples of Fibonacci multi-multigrades:

$$
\begin{equation*}
0^{m}+(3.3)^{m}+(3.3)^{m}=\left(3.1^{2}\right)^{m}+\left(3.1^{2}\right)^{m}+\left(3.2^{2}\right)^{m}=\ldots=\ldots \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
0^{m}+(3.7)^{m}+(3.7)^{m}=\left(3.1^{2}\right)^{m}+\left(3.2^{2}\right)^{m}+\left(3.3^{2}\right)^{m}=\left(7.1^{2}\right)^{m}+\left(7.1^{2}\right)^{m}+\left(7.2^{2}\right)^{m} \tag{4}
\end{equation*}
$$

$$
=\left(1^{2}\right)^{m}+\left(4^{2}\right)^{m}+\left(5^{2}\right)^{m}
$$

(5) $\quad 0^{m}+(3.19)^{m}+(3.19)^{m}=\left(3.2^{2}\right)^{m}+\left(3.3^{2}\right)^{m}+\left(3.5^{2}\right)^{m}=\left(19.1^{2}\right)^{m}+\left(19.1^{2}\right)^{m}+\left(19.2^{2}\right)^{m}$

$$
=\left(1^{2}\right)^{m}+\left(7^{2}\right)^{m}+\left(8^{2}\right)^{m}
$$

(6)

$$
\begin{gathered}
0^{m}+(3 \cdot 49)^{m}+(3 \cdot 49)^{m}=\left(3 \cdot 3^{2}\right)^{m}+\left(3 \cdot 5^{2}\right)^{m}+\left(3 \cdot 8^{2}\right)^{m} \\
=\left(49 \cdot 1^{2}\right)^{m}+\left(49 \cdot 1^{2}\right)^{m}+\left(49 \cdot 2^{2}\right)^{m}=\left(2^{2}\right)^{m}+\left(11^{2}\right)^{m}+\left(13^{2}\right)^{m} \\
0^{m}+\left[3\left(F_{2 n+4}-F_{n} \cdot F_{n+1}\right)\right]^{m}+\left[3\left(F_{2 n+4}-F_{n} \cdot F_{n+1}\right)\right]^{m}=\left[3 F_{n+1}^{2}\right]^{m}+\left[3 F_{n+2}^{2}\right]^{m}+\left[3 F_{n+3}^{2}\right]^{m} \\
=\left[\left(F_{2 n+4}-F_{n} \cdot F_{n+1}\right) F_{1}^{2}\right]^{m}+\left[\left(F_{2 n+4}-F_{n} \cdot F_{n+1}\right) F_{2}^{2}\right]^{m}+\left[\left(F_{2 n+4}-F_{n} \cdot F_{n+1}\right) F_{3}^{2}\right]^{m} \\
=\left[F_{n}^{2}\right]^{m}+\left[\left(F_{n+5}-F_{n}\right)^{2}\right]^{m}+\left[F_{n+5}^{2}\right]^{m} \quad(m=1,2) .
\end{gathered}
$$

Clearly, we can expand our multigrades by a simple process. If we multiply (4) by 19×49, (5) by 7×49 and (6) by 7×19, we get

$$
\begin{aligned}
& 3^{m}+(3.7 \cdot 19.49)^{m}+(3.7 \cdot 19.49)^{m}=\left[(3 \cdot 19.49) 1^{2}\right]^{m}+\left[(3 \cdot 19.49) 2^{2}\right]^{m}+\left[(3 \cdot 19.49) 3^{2}\right]^{m} \\
& =\left[(7.19 .49) 1^{2}\right]^{m}+\left[(7.19 .49) 1^{2}\right]^{m}+\left[(7.19 .49) 2^{2}\right]^{m}=\left[(19.49) 1^{2}\right]^{m}+\left[(19.49) 4^{2}\right]^{m}+\left[(19.49) 5^{2}\right]^{m} \\
& =\left[(3.7 \cdot 49) 2^{2}\right]^{m}+\left[(3.7 .49) 3^{2}\right]^{m}+\left[(3.7 .49) 5^{2}\right]^{m}=\cdots=\left[(7.49) 1^{2}\right]^{m}+\left[(7.49) 7^{2}\right]^{m}+\left[(7.49) 8^{2}\right]^{m} \\
& =\left[(3.7 \cdot 19) 3^{2}\right]^{m}+\left[(3.7 \cdot 19) 5^{2}\right]^{m}+\left[(3.7 .19) 8^{2}\right]^{m}=\cdots=\left[(7 \cdot 19) 2^{2}\right]^{m}+\left[(7 \cdot 19) 11^{2}\right]^{m}+\left[(7 \cdot 19) 13^{2}\right]^{m} \text {, } \\
& \text { where } m=1,2 \text {. }
\end{aligned}
$$

It is possible to obtain multigrades of higher and higher powers by using the traditional method summarized by J.A.H. Hunter and myself in an article several years ago [2].

I give here, by way of example, the following which I recently derived:

$$
\begin{aligned}
& \left(F_{n}^{2}\right)^{m}+\left[\left(F_{n+4}-F_{n}\right)^{2}\right]^{m}+\left[3 F_{n+2}^{2}+2 F_{n} \cdot F_{n+4}-F_{n}^{2}\right]^{m}+\left[F_{n+4}^{2}+3 F_{n+2}^{2}-F_{n}^{2}\right]^{m} \\
& =\left(3 F_{n+1}^{2}\right)^{m}+\left(2 F_{n} \cdot F_{n+4}\right)^{m}+\left(3 F_{n+3}^{2}\right)^{m}+\left(3 F_{n+3}^{2}+2 F_{n} \cdot F_{n+4}-3 F_{n+1}^{2}\right)^{m},
\end{aligned}
$$

where $m=1,2,3$,
$0^{m}+\left(F_{n+5}\right)^{m}+\left(F_{n+5}+F_{n}\right)^{m}+\left(2 F_{n+5}+F_{n}\right)^{m}=\left(F_{n+2}\right)^{m}+\left(F_{n+3}\right)^{m}+\left(F_{n+6}+F_{n}\right)^{m}+\left(F_{n+6}+F_{n+2}\right)^{m}$,
where $m=1,2,3^{*}$.

$$
\begin{aligned}
& 0^{m}+\left(F_{n+5}+F_{n}\right)^{m}+\left(F_{n+5}+F_{n+2}\right)^{m}+\left(F_{n+5}+F_{n+3}\right)^{m}+\left(F_{n+7}+F_{n}\right)^{m}+\left(F_{n+7}+F_{n+2}\right)^{m} \\
&=\left(F_{n+2}\right)^{m}+\left(F_{n+3}\right)^{m}+\left(2 F_{n+5}\right)^{m}+\left(3 F_{n+5}+F_{n}\right)^{m}+\left(F_{n+6}+F_{n}\right)^{m}+\left(F_{n+6}+F_{n+2}\right)^{m}
\end{aligned}
$$

where $n=1,2,3,4^{* *}$.

REFERENCES

1. Donald Cross, "Second- and Third-Order Multi-multigrades," Journal of Recreational Math., Vol. 7, No. 1, Winter 1974, pp. 41-44.
2. D.C. Cross, "Multigrades," Recreational Mathematics Magazine, No. 13, Feb. 1963, pp. 7-9.
3. D.C. Cross, "The Magic of Squares," Mathematical Gazette, Vol. XLV, No. 353, October 1961, pp. 224-227 and Vol. L, No. 372, May 1966, pp. 173-174.
```
*If we add \(F_{n+1}\) to each term, the multigrade reads
    \(\left(F_{n+1}\right)^{m}+\left(F_{n+1}+F_{n+5}\right)^{m}+\left(F_{n+2}+F_{n+5}\right)^{m}+\left(F_{n+2}+2 F_{n+5}\right)^{m}=\left(F_{n+3}\right)^{m}+\left(F_{n+1}+F_{n+3}\right)^{m}\)
                        \(+\left(F_{n+2}+F_{n+6}\right)^{m}+\left(F_{n+3}+F_{n+6}\right) m\),
```

where $m=1,2,3$.
** If we add F_{n+1} to each term, the multigrade reads

$$
\begin{aligned}
& \left(F_{n+1}\right)^{m}+\left(F_{n+2}+F_{n+5}\right)^{m}+\left(F_{n+3}+F_{n+5}\right)^{m}+\left(F_{n+1}+F_{n+3}+F_{n+5}\right)^{m}+\left(F_{n+2}+F_{n+7}\right)^{m}+\left(F_{n+3}+F_{n+7}\right)^{m} \\
& \quad=\left(F_{n+3}\right)^{m}+\left(F_{n+1}+F_{n+3}\right)^{m}+\left(F_{n+1}+2 F_{n+5}\right)^{m}+\left(F_{n+2}+3 F_{n+5}\right)^{m}+\left(F_{n+2}+F_{n+6}\right)^{m}+\left(F_{n+3}+F_{n+6}\right)^{m}
\end{aligned}
$$

where $m=1,2,3,4$.

