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Readers of The Fibonacci Quarterly will probably be familiar with multigrades. Here are two examples; 
(1) 1m + 6m+8m = 2m + 4m+9m (m=1,2) 
and 
(2) 1m + 5m+8m + 12m = 2m + 3m+Wm+11m (m = 1,2,3). 

The first example is called a second-order multigrade; the second example, a third-order multigrade. 
Adding, subtracting, multiplying and dividing do not affect the equality of a multigrade, provided we perform the 

same operation or operations on each element in i t For example, Eq„ (1) above becomes 
2m + 7m + 9m = 3m + 5m + Wm, 

where m = 1,2, if we add 1 to each element; Eq. (2) becomes 
2m +10m + Wm+24m = 4m + 6m +20m+22m, 

where m = 1,2, 3, if we multiply each element by 2. 
This note is concerned with what I call second-order Fibonacci multi-multigrades. (I define [1] a multi-multigrade 

as a multigrade having three or more "components" as compared with the normal two "components" in a multigrade 
as in (1) and (2) above.) 

Here are some examples of Fibonacci multi-multigrades: 
(3) Om + (3-3)m + (3»3)m = (3- 12)m + (3-12 ) m + (3-22)m = - = -
(4) Om + (3-7)m + (3>7)m = (3- 12)m + (3-22)m + (3-32)m = (7- 12)m + (7-12 ) m + (7-22)m 

= (12}m + (42}m + (s2 }m 

(5) Om + (3- 19)m + (3- 19)m = (3-22)m + (3-32)m + (3>52)m = (19- 12)m + (19-12 ) m + (19-22)m 

= (12)m + (72)m + (82)m 

(6) Om + (3-49)m + (3-49)m = (3-32 ) m + (3-52)m + (3-82)m 

= (49-12)m + (49-12)m + (49-22)m = (22 )m+ (112 ) m + (132)m 

Om + [3(F2n+4 - Fn-Fn+1)]
m + [3(F2n+4 - Fn-Fn+1)]

m = [3F2
+1]

m + [3F2
n+2]

m + [3F2
+3]

m 

= t(F2n+4 - Fn-Fn+1)F
2]m + [(F2n+4 - Fn-FnH)F2]m + [(F2nf4 - Fn-FnH)F2]m 

= [F2]m + [(Fn+5 - Fn)
2]m + [F2+5]

m (m = 1,2). 

Clearly, we can expand our multigrades by a simple process, if we multiply (4) by 19 x 49, (5) by 7 x 49 and (6) 
by 7 x 19, we get 
0m + (3-7- 19>49)m + (3-7 -19-49)m = [(3-1949) 12]m + [(3- 19>49)22]m + 1(3-19*49) 32]m 

= 1(7- 19-49)12]m + [(7- 19-49)12]m+1(7-19 -49)22]m = f(19-49)12]m + [(19-49)42]m + [(19-49)52]m 

= [(3-7-49)22]m + [(3-7-49)32]m + [(3-7-49)52]m = - = [(7-49)12 ]m + [(749 )72]m + [(7-49 )82]m 

= [(3-7-19)32]m + [(3-7-19)52]m + [(3-?-19)82]m = •• = [(7-19)22]m + l(7-19)112]m + [(7-19)132]m, 
wnere m = 1,2. 
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It is possible to obtain multigrades of higher and higher powers by using the traditional method summarized by 
J.A.H. Hunter and myself in an article several years ago [2]. 

I give here, by way of example, the following which I recently derived: 
(F^r^[(F^4-Fn)

2]m + f3F^2 + 2Fn^n+4-F^m^fF^ + 3F^2-F^Jm 

= (3F2
n+1}

m + (2Fn • Fn+4)
m + (3F2

n+3)
m + (3F2+3 + 2Fn-Fn+4 - 3F2

+1)
m , 

where m = 1,2, 3, 
Om + (Fn+5)

m + (Fn+5 + Fn)
m + (2Fn+5 + Fn)

m = (Fn+2)
m + (Fn+3)

m + (Fn+6 + Fn)
m + (Fn+6 + Fn+2)

m, 

where m = 1,2,3*. 

Om + (Fn+5 + Fn)
m + (Fn+5 + Fn+2)

m + (Fn+5 + Fn+3)
m + (Fn+7 + Fn)

m + (Fn+7 + Fn+2)
m 

= (Fn+2)m + (Fn+3)m + (2Fn+5r+(3Fn+5 + Fn)
m + (Fn+6 + Fn)

m + (Fn+6 + F^^^^^ , 

where n= 1,2,3,4** 
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*lf we add Fn+f to each term, the multigrade reads 
(Fn+1)

m + (Fn+1 + Fn+S)m + (Fn+2 + Fn+5)
m + (Fn+2 + 2Fn+5)

m = (Fn+3)
m + (Fn+1 + Fn+3)

m 

+ (Fn+2 + Fn+6)
m + (Fn+3 + Fn+6)m, 

where m = 1,2,3. 

**!fweadd Fn+1 to each term, the multigrade reads 

(Fn+i)
m + (Fn+2 + Fn*)

mHFn+3+Fn^)m + {Fn+1 + Fn+3 + Fn 

= (Fn+3)
m + (Fn+1 + Fn+3)

m + (Fn+1 +2Fn+5)
m + (Fn+2 + 3Fn+5)

m + (Fn+2 + Fn+6)
m + (Fn+3 + Fn+6)

m. 

where m = 1, 2, 3, 4. 


