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DEFINITIONS 

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy 
Fn+2 = Fn+1 + Fn< F0 = 0, F7 = 1 and Ln+2 = Ln+1 + Ln, LQ = 2, L1 = 1. 

PROBLEMS PROPOSED IN THIS ISSUE 

B-310 Proposed by Daniel Finkel, Brooklyn, New York. 

Find some positive integers n and r such that the binomial coefficient I n J is divisible by n + I 

B-311 Proposed by Jeffrey Shallit, Wynnewood, Pennsylvania. 

Let k be a constant and let \ an \ be defined by 

an = an^ +an„2
+K a0 = 0, a-j = 1. 

Find 
lim (an/Fn). 

n - > oo 

B-312 Proposed by J.A.H, Hunter, Fun with Figures, Toronto, Ontario, Canada. 

Solve the doubly-true alphametic 
ONE 
ONE 
ONE 
TWO 

THREE 

EIGHT 

Unity is not normally considered so, but here our ONE is prime! 

B-313 Proposed by Verner E. Hoggatt, Jr., California State University, San Jose, California.. 

Let 
MM = Lkx + (L2 /2)x2 + (L3 /3)x3 + - . 

Show that the Maclaurin series expansion fore M is Fx + F2x + F3x
2 + •••. 

B-314 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Show that L k = 3 (mod 10) for all primesp > 5. 
2p 
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SOLUTIONS 
DIFFERENTIATING FIBONACCI GENERATING FUNCTION 

B-279 (Correction of typographical error in Vol. 12, No. 1 (February 1974). 

Find a closed form for the coefficient of xn in the Maclaurin series expansion of 
(x+2x2)/(1-x-x2)2. 

Solution by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Let 

F(x) = (1-x-x*)'1 = Yl Fn+1x
n 

n=0 

be the well-known generating function for the Fibonacci numbers. Differentiating term by term, we have formally: 
oo 

Fix) = (1+2x)(1-x-x2)-2 = Y* ^n+l*"'1 • 
n=1 

Therefore, 
oo 

(x+2x2)(1-x-x>)-* = £ nFn+1x
n. 

n=0 

Hence, the required coefficient is equal to nFn+1, n = 0, 1, 2, —. 
Also solved by Clyde A. Bridger, Charles Chouteau, Edwin T. Hoefer, A.C. Shannon, and the Proposer. 

GOLDEN POWERS OF 2 
B-286 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Letg be the "golden ratio" defined by 
g = lim (Fn/FnH). 

Simplify 

0 ' 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

As 1/g = a= (1 + s/5 )/2 then the sum equals 

o 
that \sg2n'(1 + a3)n, which simplifies to 2n. 

Also solved by W.G. Brady, PaulS. Bruckman, Ralph Garfield, Frank Higgins, A.C. Shannon, Martin C. Weiss, David 
Zeitlin, and the Proposer. 

SIMPLIFIED 
B-287 Proposed by Herta T. Freitag, Roanoke, Virginia. 

Let^beasin B-286. Simplify 
g2{(-ir1[Fn„3-gFn„2]+g+2\. 
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Solution by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Since g= l/a=-ft, 

Fn-3-gFn-2 = r * j a"'3 - fT3 - a 1 a"'2 - ^ n ' 2 \= 5^ \^2\{a-? } - ^ 2 

Also, since/32 = (3 + /, theng2 = 1 - g. Hence, 

g2(g+2) = (1-g)(2+g) = 2-g - g2 F 2-g - 1 +g = 1. 

Therefore, the given expression reduces to: 
g2(_i)i-1(_1)n-2gn-2+1 s ; _ g n 

Also solved by Ralph Garfield, Frank Higgins, and the Proposer. 

A MULTIPLE OF £2/7 

B-288 Proposed by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Prove that F2n(4k+1) = F2n (m°d L2n) for all integers n and k. 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

If/7 is even then 
'm+p ~ >m~p ~ LmFp. 

Replace p by 4nk and m by 2n(2k + 1) to get 
F2n(4k+1) = F2n + L2n(2k+1)F4nk . 

The required congruence follows with an application of Garlitz' result: La divides Z.& iff b = a(2c - 1), a> 1. ("A 
Note on Fibonacci Numbers," The Fibonacci Quarterly, Vol. 2, No. 1, 1964, pp. 15-28.) 

Also solved by Clyde A. Bridger, Ralph Garfield, Frank Higgins, A.C. Shannon, Gregory Wulczyn, David Zeitlin, and 
the Proposer. 

A MULTIPLE OF L2n+1 

B-289 Proposed by Paul S. Bruckman, University of Illinois, Chicago Circle, Illinois. 

Prove that F(2n+D(4k+1) = F2n+1 (mod l-2n+lh for all integers n and k. 

Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

If p is even then 
Fm+p~Fm-p = LmFp. 

Replace p by 2k(2n + 1)andmhy (2n + 1)(2k + 1) to get 
F(2n+1)(4k+1)- F2n+1 = L.(2n+1)(2k+1)F2k(2n+1)• 

The required congruence follows with an application of Carlitz' result: La divides £& iff b~a(2c- 1), a> 1. ("A 
Note on Fibonacci Numbers," The Fibonacci Quarterly, Vol. 12, No. 1, 1964, pp. 15-28.) 

Also solved by Clyde A. Bridger, Ralph Garfield, Frank Higgins, A.C. Shannon, Gregory Wulczyn, David Zeitlin, and 
the Proposer. 

CONVOLUTED F2n 

B-290 Proposed by V.E. Hoggatt, Jr., San Jose State University, San Jose, California. 

Obtain a closed form for 
n 

2n + 1 + Y^ (2n + 1-2k)F2k. 
k=1 
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Solution by Graham Lord, Temple University, Philadelphia, Pennsylvania. 

The sum of the first k odd indexed Fibonacci numbers is F2k and that of the first k even indexed ones is F2k+1 
- 1, where k> 1. 

Therefore, 
n n~1 

2n + 1 + H (2n + 1-2k)F2k = 2n + 1 + F2n+i-1+2Yj ^2 +?4 +~'+?2k) 
k=1 k=1 

n-1 

- 2n + F2n+1+2 £ (F2k+1~D 
k=1 • 

= 2n + F2n+i +2(F2n -F7-n + 1) 

= F2n+1 +2F2n = L2n+1. 

Also solved by W. G. Brady, Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, Frank Higgins, A. C. Shannon, 
Gregory Wulczyn, and the Proposer. 

TRANSLATED RECURSION 

B-192 Proposed by Phil Mana, University of New Mexico, Albuquerque, New Mexico. 

Find the second-order recursion relation for { * > ? [ . given that 
n 

k=0 

where a and b are constants. 

" = J2 ( 1 ) Vk and Vn+2 = Wn+l+bVn, 

Solution by AC. Shannon, New South Wales Institute of Technology, N.S.W., Australia. 

Letyn = Aan + B$n, where A,B depend on yi, y2and a,j3arethe roots of the auxiliary equation 

0 = x2 - ax - b. 
Then 

zn=J2 (n
k)(Aakf-B$k) = A(1 + a)n+B(1+$)n 

k=o 

= ((1 + a) + (1+ $))zn„7 -(1 + a)(1 + $kn-2 = h + 2)zn^ ~(a-b+ 1)zn_2 

since a = a + 0 and b = -a(3. 

Also solved by W.G. Brady, Paul S. Bruckman, Ralph Garfield, Frank Higgins, David Zeitlin, and the Proposer. 

******* 


