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1. INTRODUCTION 

115= | sj I is any integer sequence of a Fibonacci space [2] based on a polynomial 

fix) = ~-a0~~>-anm1x
n~f +xn = (x-rrf'-fx-rn), 

a-,^Z, r-j real, /y distinct, |/y| < 1 f o r / > 2, then 

frisz + F] = sk+z 

with any fixed k, and F on (0,1), for all c sufficiently large. This is a broad generalization, in an asymptotic sense, 
of a conjecture by D. Zeitlin [3] concerning the case 

fix) = -1-Mx+x2, M > 1, F = M/(M+1), and S=\o,1M'~], 

defined by u% + MUQ+J = u^+2- The latter is shown to be true in all cases but one, and in slightly revised form in the 
remaining case. 

Z A GENERAL ASYMPTOTIC THEOREM 

With the polynomial 
fix) = -ag-a-jX an.fx

n"1 +xn = (x - rj) -(x - rn), 

a,- integers, r-j real, /y distinct, |/y| < 1 for / > 2, we associate the /7-space C(f) of all (complex) sequences S =is0,sif—J 
in which SQ, —, sn-i are arbitrary, but having 

aoSj + '-' + an-fSj+n-i = s1+n; j > 0. 
The n geometric sequences 

/?/= \i,n,r?,-\ 
form a basis for the space C(f), in terms of which an arbitrary integral sequence S may be expressed in the form 

S = ciRi + - + cnRn, i.e., s% = c-frf + - +cnr^; fi> 0. 

Since |/y| < /, / > 2, we may write 

(1) SQ = cir-j +e%; e% -» 0. 

These results may be found in [2 ] . That cj (and hence e%) are real is shown in an Appendix. As an immediate con-
sequence, we have the asymptotic 

Theorem 1. Let F be an arbitrary constant on the open interval (0,1), and S= j sj I an integral sequence of 
the space C(f). Then for fixed k > 0, one has the greatest integer 

[tfsQ + FJ = sk+% 
for all c sufficiently large. 
Proof. Using (1), we have only to prove 

cir^+e/c+z < rffcirj+ezJ + F < c^f*+ ek+i+1 
for large fi, i.e., 

ek+z-rfez < F < ek+2-r*ez + 1 

and this is obvious sincere -» 0 and 0 < F < 1. 
This research was performed under the auspices of the U.S. Atomic Energy Commission. 
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3. THE ZEiTLIM CONJECTURE 
ForthemtegerM^ 1, Set 

f(x)=1 -Mx+x2 = (x-aHx-h), a > b, and F = M/(M+1). 
The roots a,b have the properties 

a > M, b < 0, \b\ = (p-M)/2 < 7, ab = -1, a-b = p; p = (M2 + 4)% . 

The sequence U = \u0, uj, ••• I is defined recursively by 

HQ = 0, u-j = 1, u% + Mu%+i = usi+2; c > 0» 

and is well known [2 ] , p. 103, to be related to the roots by 
i / 2 = p-Ua^-b*); fi > 0. 

From this we find 
a u% - p (a — b J — p b (a — b J, 

or 
(2) akuz = uk+z-b*uk. 

Theorem 2. For the sequence U, one has the greatest integer 

[akusi + F] = uk+p 

iorz>2,k = 1, and for e > k > 2 except possibly in the case c odd > k odd > 3 when M > 2. 

Proof. We only sketch the argument, which closely follows that in [1 ] . In all cases, the final verification consists 
in the laborious comparison of two polynomials in M, f o rM > 1. The required relation 

Uk+Si < akuz + F < uk+% + 1 
is seen from (2) to be equivalent to 

-1/(M+ 1) < b%k < M/(M+1). 
Case \.z>2,k=1. For c even, it suffices to prove b2 < M/(M + 1). For £ odd, \b f < 1/(M + 1) suffices. These are 

found to hold upon replacing \b | by its value (p - M)/2 and rationalizing. 
Case \\mz>k >2. For z,k even, it suffices to show bkuk < M/(M + 11 But 

bkuk = bkp~1(ak-hk) = p-1(1-b2k) < M/(M+1) 

will hold for all k iff p"1 < M/(M + 1), which is verified as before. 
For £ even ^ k odd > 2, bk+7uk < M/(M + 1) suffices. Now, 

bk+1uk = \b\p~1(1+b2k) 

by an ananogous step, so we need only show that 

\b\p~1(1+h6) < M/(M+1). 

This is the most laborious verification. 
For c odd > k even > 2, it suffices to prove -bk+1uk < 1/(M + V. Here we find 

-hk+1 p"1 (ak ~hk) = \b\p~1(1-b2k) < 1/(M+1). 

since in the limit, \b\p~1 < 1/(M + 1). This is easy. 
Finally, suppose c odd > k odd > 2, and M = 1. It suffices to prove 

-bkuk = p~1(1+h2k) < 1/(M+ 1), k > 3, 

and this is true since p~1 (1 +b6) < 1/(M+ 1) is verifiable when M= 1 (and only then). 
The relation of Theorem 2 may fail in the remaining case, as is easily seen from the example M = 2,SL = k = 3, where 

[a3u2 + F] = 71 = 1 + u6. 

Indeed it always fails for M > 2, fi = k odd > 3, as appears in the final 
Theorem 3. For the sequence U, with M >2, e odd > k odd > 2, the value of [akuz + F] is either uk+% or uk+% 

+ 1, according as \bfuk < 1/(M+ 1) or 1/(M + 1)< \hfuk, the latter always obtaining for c = /r. 
Proof. Using (2), the relations of the theorem are found to be equivalent, respectively, to 
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-M/(M+1) < \by-uk < 1/(M+1) and 1/(M+1) < \b\uk < (M + 2)/(M + 1). 

We note first that \bfuk is always between -M/(M + 1) and (M+2)/(M + 1). The first is obvious. For the second, 
it suffices to prove \b\kuk < (M+2)/(M + 1), k odd > 3. But 

u2k, 

holds provided 
\b\kuk = p~1(1+bZK) < (M + 2)/(M+1) 

p~1(1+h6) < (M + 2)/(M+1), 

which may be verified as in Theorem 2, Case IS, second part. 
Hence for fixed k, we consider the relation of \bfuk to 1/(M + 1) as c increases from k. Mow if at the start we had 

\b\kuk = p~1(1+b2k) < 1/(M+1), 

this would imply p~1 < 1/(M + 1), which is false for all M > 2. The theorem follows. 
APPENDIX 

Reality of ci,e% 
From [2] we write 

(3) 

where 

Rx 1 ' , 

/ r„ 

„n-1 

rn-1 

Un 

Un-1 

Un-1 rn-1,1 - rn-1fn 

r/k = (-1)j+kBkJ/A, 

= \s0 ~-sn-t\-\r//e\ 

U0 = { 1, 0, •••, 0, a0, ••• f , ., Un-<i = | 0, Q, - , 1, an-u - [ 
is an obvious basis, and the matrix determinant A is that of Vandermonde. Inversion gives 

r01 '" fOn 
(4) 

where 

and Rkj is the £,/-minor of the matrix in (3). Since 

S = \s0 -sn„] 

we see that 
ct = s0roi + - + sn-trn-ifi, 

involving the first column of the inverse in (4). But each rjj involves the quotient Rfj/A. The latter is real, since 
any complex roots/-/ occur in pairs of conjugates. 
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