# A GREATEST INTEGER THEOREM FOR FIBONACCI SPACES 

## C. J. EVERETT

Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico 87544

## 1. INTRODUCTION

If $S=\left\{s_{j}\right\}$ is any integer sequence of a Fibonacci space [2] based on a polynomial

$$
f(x)=-a_{0}-\cdots-a_{n-1} x^{n-1}+x^{n}=\left(x-r_{1}\right) \cdots\left(x-r_{n}\right),
$$

$a_{j} \in Z, r_{1}$ real, $r_{i}$ distinct, $\left|r_{i}\right|<1$ for $i \geqslant 2$, then

$$
\left[r_{1}^{k} s_{\ell}+F\right]=s_{k+\ell}
$$

with any fixed $k$, and $F$ on $(0,1)$, for all $\ell$ sufficiently large. This is a broad generalization, in an asymptotic sense, of a conjecture by D . Zeitlin [3] concerning the case

$$
f(x)=-1-M x+x^{2}, \quad M \geqslant 1, \quad F=M /(M+1), \quad \text { and } \quad S=\{0,1, M, \cdots\}
$$

defined by $u_{\ell}+M u_{\ell+1}=u_{\ell+2}$. The latter is shown to be true in all cases but one, and in slightly revised form in the remaining case.

## 2. A GENERAL ASYMPTOTIC THEOREM

With the polynomial

$$
f(x)=-a_{0}-a_{1} x-\cdots-a_{n-1} x^{n-1}+x^{n}=\left(x-r_{1}\right) \cdots\left(x-r_{n}\right),
$$

$a_{i}$ integers, $r_{1}$ real, $r_{i}$ distinct, $\left|r_{i}\right|<1$ for $i \geqslant 2$, we associate the $n$-space $C(f)$ of all (complex) sequences $S=\left\{s_{0}, s_{1}, \cdots\right\}$. in which $s_{0}, \cdots, s_{n-1}$ are arbitrary, but having

$$
a_{0} s_{j}+\cdots+a_{n-1} s_{j+n-1}=s_{j+n} ; \quad j \geqslant 0 .
$$

The $n$ geometric sequences

$$
R_{i}=\left\{1, r_{i}, r_{i}^{2}, \cdots\right\}
$$

form a basis for the space $C(f)$, in terms of which an arbitrary integral sequence $S$ may be expressed in the form

$$
S=c_{1} R_{1}+\cdots+c_{n} R_{n}, \quad \text { i.e., } \quad s_{\ell}=c_{1} r_{1}^{\ell}+\cdots+c_{n} r_{n}^{\ell} ; \quad \ell \geqslant 0 .
$$

Since $\left|r_{i}\right|<1, i \geqslant 2$, we may write

$$
\begin{equation*}
s_{\ell}=c_{1} r_{1}^{\ell}+e_{\ell} ; \quad e_{\ell} \rightarrow 0 \tag{1}
\end{equation*}
$$

These results may be found in [2]. That $c_{1}$ (and hence $e_{\ell}$ ) are real is shown in an Appendix. As an immediate consequence, we have the asymptotic
Theorem 1. Let $F$ be an arbitrary constant on the open interval $(0,1)$, and $S=\left\{s_{j}\right\}$ an integral sequence of the space $C(f)$. Then for fixed $k \geqslant 0$, one has the greatest integer
for all $\ell$ sufficiently large.

$$
\left[r_{1}^{k} s_{\ell}+F\right]=s_{k+\ell}
$$

Proof. Using (1), we have only to prove
for large $\ell$, i.e.,

$$
c_{1} r_{1}^{k+1}+e_{k+\ell} \leqslant r_{1}^{k}\left(c_{1} r_{1}^{\ell}+e_{\ell}\right)+F<c_{1} r_{1}^{k+\ell}+e_{k+\ell}+1
$$

$$
e_{k+\ell}-r_{1}^{k} e_{Q} \leqslant F<e_{k+\ell}-r_{1}^{k} e_{Q}+1
$$

and this is obvious since $e_{\ell} \rightarrow 0$ and $0<F<1$.

[^0]
## 3. THE ZEITLIN CONJECTURE

For the integer $M \geqslant 1$, let

$$
f(x)=1-M x+x^{2}=(x-a)(x-b), \quad a>b, \quad \text { and } \quad F=M /(M+1) .
$$

The roots $a, b$ have the properties

$$
a>M, \quad b<0, \quad|b|=(\rho-M) / 2<1, \quad a b=-1, \quad a-b=\rho ; \quad \rho \equiv\left(M^{2}+4\right)^{1 / 2} .
$$

The sequence $U=\left\{u_{0}, u_{1}, \cdots\right\}$ is defined recursively by

$$
u_{0}=0, \quad u_{1}=1, \quad u_{\ell}+M u_{Q+1}=u_{\ell+2} ; \quad \ell \geqslant 0,
$$

and is well known [2] , p. 103, to be related to the roots by

$$
u_{\ell}=\rho^{-1}\left(a^{\ell}-b^{\ell}\right) ; \quad \ell \geqslant 0 .
$$

From this we find

$$
a^{k} u_{\ell}=\rho^{-1}\left(a^{k+\ell}-b^{k+\ell}\right)-\rho^{-1} b^{\ell}\left(a^{k}-b^{k}\right),
$$

or
(2) $\quad a^{k} u_{\ell}=u_{k+\ell}-b^{\ell} u_{k}$.

Theorem 2. For the sequence $U$, one has the greatest integer

$$
\left[a^{k} u_{\ell}+F\right]=u_{k+\ell}
$$

for $\ell \geqslant 2, k=1$, and for $\ell \geqslant k \geqslant 2$ except possibly in the case $\ell$ odd $\geqslant k$ odd $\geqslant 3$ when $M \geqslant 2$.
Proof. We only sketch the argument, which closely follows that in [1]. In all cases, the final verification consists in the laborious comparison of two polynomials in $M$, for $M \geqslant 1$. The required relation

$$
u_{k+\ell} \leqslant a^{k} u_{l}+F<u_{k+l}+1
$$

is seen from (2) to be equivalent to

$$
-1 /(M+1)<b^{\ell} u_{k} \leqslant M /(M+1)
$$

Case I. $\ell \geqslant 2, k=1$. For $\ell$ even, it suffices to prove $b^{2} \leqslant M /(M+1)$. For $\ell$ odd, $|b|^{3}<1 /(M+1)$ suffices. These are found to hold upon replacing $|b|$ by its value $(\rho-M) / 2$ and rationalizing.
Case II. $\ell \geqslant k \geqslant 2$. For $\ell, k$ even, it suffices to show $b^{k} u_{k} \leqslant M /(M+1)$. But

$$
b^{k} u_{k}=b^{k} \rho^{-1}\left(a^{k}-b^{k}\right)=\rho^{-1}\left(1-b^{2 k}\right)<M /(M+1)
$$

will hold for all $k$ iff $\rho^{-1}<M /(M+1)$, which is verified as before.
For $\ell$ even $\geqslant k$ odd $\geqslant 2, b^{k+1} u_{k} \leqslant M /(M+1)$ suffices. Now,

$$
b^{k+1} u_{k} \equiv|b| \rho^{-1}\left(1+b^{2 k}\right)
$$

by an ananogous step, so we need only show that

$$
|b| \rho^{-1}\left(1+b^{6}\right) \leqslant M /(M+1) .
$$

This is the most laborious verification.
For $\ell$ odd $\geqslant k$ even $\geqslant 2$, it suffices to prove $-b^{k+1} u_{k}<1 /(M+1)$. Here we find

$$
-b^{k+1} \rho^{-1}\left(a^{k}-b^{k}\right)=|b| \rho^{-1}\left(1-b^{2 k}\right)<1 /(M+1) .
$$

since in the limit, $|b| \rho^{-1}<1 /(M+1)$. This is easy.
Finally, suppose $\ell$ odd $\geqslant k$ odd $\geqslant 2$, and $M=1$. It suffices to prove

$$
-b^{k} u_{k} \equiv \rho^{-1}\left(1+b^{2 k}\right)<1 /(M+1), \quad k \geqslant 3
$$

and this is true since $\rho^{-1}\left(1+b^{6}\right)<1 /(M+1)$ is verifiable when $M=1$ (and only then).
The relation of Theorem 2 may fail in the remaining case, as is easily seen from the example $M=2, \ell=k=3$, where

$$
\left[a^{3} u_{3}+F\right]=71=1+u_{6}
$$

Indeed it always fails for $M \geqslant 2, \ell=k$ odd $\geqslant 3$, as appears in the final
Theorem 3. For the sequence $U$, with $M \geqslant 2, \ell$ odd $\geqslant k$ odd $\geqslant 2$, the value of $\left[a^{k} u_{l}+F\right]$ is either $u_{k+\ell}$ or $u_{k+\ell}$ +1 , according as $|b|^{\ell} u_{k}<1 /(M+1)$ or $1 /(M+1) \leqslant|b|^{\ell} u_{k}$, the latter always obtaining for $\ell=k$.
Proof. Using (2), the relations of the theorem are found to be equivalent, respectively, to

$$
-M /(M+1) \leqslant|b|^{\ell} u_{k}<1 /(M+1) \quad \text { and } \quad 1 /(M+1) \leqslant|b|^{\ell} u_{k}<(M+2) /(M+1) .
$$

We note first that $|h|^{\ell} u_{k}$ is always between $-M /(M+1)$ and $(M+2) /(M+1)$. The first is obvious. For the second, it suffices to prove $|b|^{k} u_{k}<(M+2) /(M+1), k$ odd $\geqslant 3$. But

$$
|b|^{k} u_{k}=\rho^{-1}\left(1+b^{2 k}\right) \leqslant(M+2) /(M+1)
$$

holds provided

$$
\rho^{-1}\left(1+b^{6}\right)<(M+2) /(M+1)
$$

which may be verified as in Theorem 2, Case II, second part.
Hence for fixed $k$, we consider the relation of $|b|^{\ell} u_{k}$ to $1 /(M+1)$ as $\ell$ increases from $k$. Now if at the start we had

$$
|b|^{k} u_{k} \equiv \rho^{-1}\left(1+b^{2 k}\right)<1 /(M+1)
$$

this would imply $\rho^{-1}<1 /(M+1)$, which is false for all $M \geqslant 2$. The theorem follows.

## APPENDIX

Reality of $c_{1}, e_{\chi}$
From [2] we write
(3)
where

$$
\left|\begin{array}{c}
R_{1} \\
\vdots \\
R_{n}
\end{array}\right|=\left|\begin{array}{cccc}
1 & r_{1} & \cdots & r_{1}^{n-1} \\
\vdots & & & \\
1 & r_{n} & \cdots & r_{n}^{n-1}
\end{array}\right|\left|\begin{array}{c}
U_{0} \\
\vdots \\
U_{n-1}
\end{array}\right|,
$$

$$
U_{0}=\left\{1,0, \cdots, 0, a_{0}, \cdots\right\}, \cdots, U_{n-1}=\left\{0,0, \cdots, 1, a_{n-1}, \cdots\right\}
$$

is an obvious basis, and the matrix determinant $\Delta$ is that of Vandermonde. Inversion gives

$$
\left|\begin{array}{c}
U_{0}  \tag{4}\\
\vdots \\
U_{n-1}
\end{array}\right|=\left|\begin{array}{ccc}
r_{01} & \cdots & r_{0 n} \\
\vdots & & \vdots \\
r_{n-1,1} & \cdots & r_{n-1, n}
\end{array}\right|\left|\begin{array}{c}
R_{1} \\
\vdots \\
R_{n}
\end{array}\right|,
$$

where

$$
r_{j k}=(-1)^{j+k} R_{k j} / \Delta,
$$

and $R_{k j}$ is the $k, j$-minor of the matrix in (3). Since

$$
S=\left|s_{0} \cdots s_{n-1}\right| \cdot\left|\begin{array}{c}
U_{0} \\
\vdots \\
U_{n-1}
\end{array}\right|=\left|s_{0} \cdots s_{n-1}\right| \cdot\left|r_{j k}\right| \cdot\left|\begin{array}{c}
R_{1} \\
\vdots \\
R_{n}
\end{array}\right|
$$

we see that

$$
c_{1}=s_{0} r_{01}+\cdots+s_{n-1} r_{n-1,1},
$$

involving the first column of the inverse in (4). But each $r_{j, 1}$ involves the quotient $R_{1 j} / \Delta$. The latter is real, since any complex roots $r_{i}$ occur in pairs of conjugates.

## REFERENCES

1. Robert Anaya and Janice Crump, "A Generalized Greatest Integer Function Theorem," The Fibonacci Quarterly, Vol. 10, No. 2 (February 1972), pp. 207-211.
2. E.D. Cashwell and C.J. Everett, "Fibonacci Spaces," The Fibonacci Quarterly, Vol. 4, No. 2 (April 1966), pp. 97 -115.
3. D. Zeitlin, "A Conjecture for Integer Sequences," Am. Math. Soc. Notices, Abstract 72T-A282.

[^0]:    This research was performed under the auspices of the U.S. Atomic Energy Commission.

