of the first $k$ odd primes, we see that $k=1$ is the lowest $k$ for which

$$
2^{k} k!<\prod_{i=1}^{k} p_{i}
$$

But once this inequality holds for one $k$, it holds for all larger $k$. For by multiplying each side by $2(k+1)$, we get

$$
2^{k+1}(k+1)!<\prod_{i=1}^{k} p_{i} \cdot 2(k+1)<\prod_{i=1}^{k+1} p_{i}
$$

since $p_{k+1}>2(k+1)$.
Therefore, for all $k$,

$$
a_{k}<\prod_{i=1}^{k} p_{i}
$$

and in particular, $a_{k}$ is less than any product of $k$ distinct odd primes. We conclude that no product of distinct odd primes can be super-perfect, and the theorem follows.
*

## SIGNIFICANCE OF EVEN-ODDNESS OF A PRIME'S PENULTIMATE DIGIT

## WILLIAM RAYMOND GRIFFIN <br> Dallas, Texas

By elementary algebra one may prove a remarkable relationship between a prime number's penultimate (next-to-last) digit's even-oddness property and whether or not the prime, $p$, is of the form $4 n+1$, or $p \equiv 1(\bmod 4)$, or of the form $4 n+3$, or $p \equiv 3(\bmod 4)$, where $n$ is some positive integer.
The relationships are as follows:
A. Primes $\equiv 1(\bmod 4)$
(1) If the prime, $p$, is of the form $10 k \pm 1, k$ being some positive integer, then the penultimate digit is even.
(2) If $p$ is of the form $10 k \pm 3$, then the penultimate digit is odd.
B. Primes $\equiv 3(\bmod 4)$
(1) If $p$ is of the form $10 k \pm 1$, then the penultimate digit is odd.
(2) If $p$ is of the form $10 k \pm 3$, then the penultimate digit is even.

The beauty of these relationships is that, by inspection alone, one may instantly observe whether or not a prime number is $\equiv 1$, or $\equiv 3(\bmod 4)$. These relationships are especially valuable for very large prime numbers-such as the larger Mersenne primes.
Thus, it is seen from inspection of the penultimate digits of the Mersenne primes, as given in [1], that all of the given primes are $\equiv 3(\bmod 4)$. This holds true for all Mersenne primes, however large they may be, for, by adding and subtracting 4 from $M_{p}=2^{p}-1$ and re-arranging, we have

$$
M_{p}=2^{p}-1+4-4=2^{p}-4+3=4\left(2^{p-2}-1\right)+3 \equiv 3(\bmod 4)
$$

[Continued on Page 208.]

