
208 ANOTHER PROPERTY OF MAGIC SQUARES [OCT. 197B] 

REMARKS 

1. We do not know any nontrivia! (all different entries) balanced square of order greater than 5. We constructed 
a magic square of order 10 from the famous pair of orthogonal Latin squares of that order, but we found it not 
balanced. 

2. We do not know an example of a balanced magic square which is not completely balanced. 
3. Magic squares of order 6, 7 and 8 appearing in Andrews* book [1] are not balanced. 
4. We did not encounter yet a balanced square whose two-way diagonal product sums are equal to the row prod-

uct sum (really diabolic one) but at least two diagonal product sums alone can be equal as in Fig. 3. 
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Likewise, it is obvious by inspection of a table of Fibonacci primes (> 5) that they are = 1 (mod 4) and thus expres-
sable as the sum of the square of two smaller integers; specifically, it is well known that 

UP * u(p-D/2 + u(p-i) 
2 

where Up is a Fibonacci prime {> 5). 
Thus, it is perceived that the Mersenne and Fibonacci primes (> 5) form two mutually exclusive sets; i.e., no primes 

(> 5) can be both a Mersenne and a Fibonacci prime. 
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