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1. IWTRODUCTiOi 
Consider nxn matrices >4 = [a,-j] with complex number entries satisfying 

/ / / / 
Definition. CaSM (multiplicatively) balanced if 

(2) Ena;y = X)na'y' 
i ' / ' 

and completely balanced if 

(3) Y.TV(au + z = y\n(a,i+z) -
i ' i J 

for all complex number z. 
These two properties are explored for n = 3, 4 and 5. Note that magic squares are our main object and there are 

millions of them which satisfy (1), of order 5 alone, 
2. THEOREM 

These squares of order 3 are all completely balanced. 
Proof. It is well known (see [2]) that (1) implies 

r k+a k-a-h k+h 
[ajj] = \ k-a+h k k+a • 

L k-b k+a+h k-
where k, a, b are arbitrary parameters. 

A direct computation can show (2). An easy way to see this is to change (2) into a determinant as follows: 

:;•] 

£na,y-X;na,y = *11 
S 2 3 

^32 

5 2 2 

*31 

* 1 3 

^ 3 3 

^ 2 

* 2 1 

= 
k+a k k-a 

k+a-h k-h k-a-b 
k + a+b k + h k-a+b 

= 0 

because the first row is the average of the other two rows. 
However, the majority of magic squares of order n(> 3) are not balanced. For example, the famous Diirer's magic 

square (Fig. 1) is not balanced and the second one (Fig. 2) is balanced and also completely. 
An nxn matrix A to be completely balanced,all the coefficients of the polynomial in z, say 

XV 
obtained from (3) have to be 0. Equation (2) is merely cQ =0. If c0 = 0, I.e., A is balanced, to determine whether A 
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Figure 1 

1 14 7 12 
15 4 9 6 
10 5 16 3 

L 8 11 2 13 
p.s. = 9,104 

Figure 2 

is further completely balanced it is sufficient to show, by the fundamental theorem of algebra, that the above poly-
nomial is satisfied by any n different values of z, In fact, checking for n - 4 (n > 3) values of z is enough. For: 
cn = n - n = 0, 

^•lE'rll'ri 
I * i J 

Cn-2 = E Z *//**/-££ *ll*lk =\\ E E ^ ^ E E ^ * 1 
/ /<* j i<k L / ¥k j &k J 

= 1 E a» E a» ~Eai' E aJk 1 = J | E V * ~ aij) - £ */i(S ~ aji) 1 
LhJ kti j,j k# j l,-j u J 

L hi hi hi hi 

where S is the row (or column) sum, and 

cn-3 = JLt I E aitajtakt~ E atfatjatk 
t Li<i<k i<j<k 

| E Y,.*it*it(S-ait-*lt) 
t Lw 

- 2 ^ atiatj(S - ati - atj) 

= £E 5 52a**ft-2 Y*4ait-S Y*atiatj+2 J^afaj 
t L w w w #/ J 

= £ £ j* E fe/f** - **> v - * E */?# - a*}+2 E **ff - *"; 
f L ¥j i i J 

(the first sum is 0 as in cn~2) 

s Y,<a?i-4> + Y,(4-4> = i 
3 hi t,i J 
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The above fact implies the following. 
Theorem Any balanced square of order 4 is completely balanced. 
For n(> 4) we are unable to show cn„4 = 0„ An obstruction is the appearance of the sum 

in cn-4. Since 

Z(Z44-Za'4) 

a sufficient condition for cn-4 
may be stated by 

(4) 

2 L,aitaTt 
m 

0 or a condition that any balanced square of order 5 to be completely balanced 

?(?**)'-?HJ 
Incidentally, Eq. (4) is the condition easily satisfied by any doubly magic square, a magic square [a-,j] such that [a-] 
is also a magic square. Summarizing the above argument we state a theorem. 

Theorem. If a balanced square of order 5 satisfies the condition (4), then it is completely balanced. 
In the theorem (4) is a sufficient condition and we do not know whether it is necessary. All the balanced magic 

squares of order 5 that we have been able to check turned out to be also completely balanced and they do satisfy 
(4). Thus, we make a conjecture. 

Conjecture. A balanced magic square of order 5 is completely balanced. 

1/ CONSTRUCTION OF BALANCED SQUARES 

Some magic squares of order 4 or 5 constructed by adding two orthogonal Latin squares seem balanced (also 
completely). For example: 

a J b c \ 
da c b \ 
c b d a I 
be a d J 

+ 

+ 8 
u V X 

x y u 
v u y 
y x v 

0 5 10 20~ 
10 20 0 5 
5 0 20 10 

20 10 5 0 

= 

1 

14 
8 

22 

p.s. = 19,646 
«=* *. 

a b o d e 
d e a b c 
b c d e a 
e ah c d 
c d e a b 

+ 

y 1A 

1 + 

\ x y s t 
I S t ¥ X 
\ v x y s 
\ y s t v 
\ t v x y 

~ 0 5 10 15 20 ~ 
10 15 20 0 5 
20 0 5 10 15 

5 10 15 20 0 
15 20 0 5 10 

607J25 

= 

dk 

y \ 
¥ I 
X I 
U J 

_ 
" / 4 2 

4 
3 

1 3 2 
3 2 4 1 
2 3 14 

9 12 23" 
21 3 7 

2 24 11 
13 6 4 

«»» »™ 
V 

y 
t 
X 

s 

= 

\ 1 2 3 
\ 4 5 1 
\ 2 3 4 
\ 5 1 2 
\ 3 4 5 

" 1 7 13 19 
14 20 21 2 
22 3 9 15 
10 11 17 23 
18 24 5 6 

igor lal / is. = : 59 

4 5m 

2 3 
5 1 
3 4 
1 2 

25 1 
8 

16 
4 

12 

9,399 
Figure 3 
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REMARKS 

1. We do not know any nontrivia! (all different entries) balanced square of order greater than 5. We constructed 
a magic square of order 10 from the famous pair of orthogonal Latin squares of that order, but we found it not 
balanced. 

2. We do not know an example of a balanced magic square which is not completely balanced. 
3. Magic squares of order 6, 7 and 8 appearing in Andrews* book [1] are not balanced. 
4. We did not encounter yet a balanced square whose two-way diagonal product sums are equal to the row prod-

uct sum (really diabolic one) but at least two diagonal product sums alone can be equal as in Fig. 3. 
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[Continued from Page 204.] 

Likewise, it is obvious by inspection of a table of Fibonacci primes (> 5) that they are = 1 (mod 4) and thus expres-
sable as the sum of the square of two smaller integers; specifically, it is well known that 

UP * u(p-D/2 + u(p-i) 
2 

where Up is a Fibonacci prime {> 5). 
Thus, it is perceived that the Mersenne and Fibonacci primes (> 5) form two mutually exclusive sets; i.e., no primes 

(> 5) can be both a Mersenne and a Fibonacci prime. 
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