SPECIAL PARTITIONS

V. E. HOGGATT, JR., and MARJORIE BICKNELL

San Jose State University, San Jose, California 95192

In this paper, we discuss the partitions $p(n)$ of non-negative integers n, using summands 1 and 2 . These are collections of 1 and 2 whose sum is n without regard to order.

Example.

$$
5=2+2+1=1+1+1+1+1=2+1+1+1 \text {; }
$$

thus $p(5)=3$.

Theorem.

$$
p(2 n+1)=p(2 n)=n+1 \text { for } n \geqslant 0 .
$$

Proof. Clearly, $p(0)=1$, using no ones or twos, and $p(1)=1$. First, $2 n$ is the sum of n two's. Each two can be replaced by a pair of ones. This can be done in n distinct ways, making ($n+1$) possible partitions. Second, $2 n+1$ is the sum of n two's and a one. Thus, it also has $(n+1)$ distinct partitions.

Theorem. If all the partitions of n are displayed simultaneously, then there are $U(n)$ ones, $S(n)$ twos, and $P(n)$ plus signs, where

$$
\begin{gathered}
U(2 n)=2 T_{n}, \\
U(2 n+1)=2 T_{n}+p(n), \\
S(2 n+1)=S(2 n)=T_{n}, \\
P(2 n+1)=3 T_{n}, \\
P(2 n+2)=3 T_{n}+2 n+1,
\end{gathered}
$$

where T_{n} is the $n^{\text {th }}$ triangular number, $n \geqslant 0$.
Proofs. Let us start with $S(2 n), n \geqslant 0$. Clearly, there are n twos and each two is sequentially replaced by a pair of ones in succeeding partitions until there are no twos. Thus

$$
S(2 n)=n+(n-1)+\cdots+2+1=T_{n} .
$$

Clearly, $(2 n+1)$ also has n twos and a one so that the number of twos in all specialized partitions of $(2 n+1)$ is also T_{n}.
Next, consider $N=2 n$. From the sequential construction of the partitions beginning with n twos it is clear that the number of ones is $2 T_{n}$. However, for $N=2 n+1$ we need an extra one for each partition; thus
[Continued on page 254.]

