6. J.W. Moon, Counting Labeled Trees, Canadian Mathematical Congress, Montreal, 1970.
7. G. Prins, "On the Automorphism Group of a Tree, Doctoral Dissertation, University of Michigan, 1957.

*

[Continued from Page 278.]

$$
U(2 n+1)=2 T_{n}+p(n)
$$

Secondly, if one places all the partition summands in a line separated by plusses, then one deletes the plus signs at the end of each partition, so that

$$
P(n)=U(n)+S(n)-p(n),
$$

leading to

$$
P(2 n)=U(2 n)+S(2 n)-p(2 n)=2 T_{n}+T_{n}-p(2 n)=3 T_{n}-n-1, \quad n \geqslant 1 .
$$

Equivalently,

$$
\begin{aligned}
P(2 n+2) & =3 T_{n+1}-(n+1)-1=\frac{3(n+1)(n+2)}{2}-n-2 \\
& =\frac{3(n+1) n}{2}+\frac{3(n+1) 2-2(n+2)}{2} \\
& =3 T_{n}+2 n+1, \quad n \geqslant 0 .
\end{aligned}
$$

More easily, we have

$$
P(2 n+1)=U(2 n+1)+S(2 n+1)-p(2 n+1)=2 T_{n}+p(2 n+1)+T_{n}-p(2 n+1)=3 T_{n},
$$

which finishes the proof.
We note that the generating function for each sequence given is easily written since the triangular numbers are involved, as

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P(2 n+1) x^{n}=\frac{3}{(1-x)^{3}} \\
& \sum_{n=0}^{\infty} P(2 n+2) x^{n}=\frac{4-x^{2}}{(1-x)^{3}}
\end{aligned}
$$

