Hence,

$$
\begin{equation*}
g_{m}(x)=\frac{(1-x) \sum_{k=1}^{m-1} \sum_{n=1}^{k-1}(-1)^{k+1}\binom{m-1}{k} R_{m,-n} x^{k-n-1}+u_{2}^{m-1}}{(1-x)^{m}}, m \geqslant 2 \tag{4.4}
\end{equation*}
$$

For special sequences

$$
\left\{u_{n}\right\}_{n=1}^{\infty}
$$

with $u_{1}=1$, the polynomial in the numerator of $g_{m}(x), m \geqslant 1$, is predictable from the convolution array of the sequence. This matter will be covered by the authors in another paper which will appear in the very near future.

REFERENCES

1. V.E. Hoggatt, Jr., and Marjorie Bicknell, "Convolution Triangles for Generalized Fibonacci Numbers," The Fibonacci Quarterly, Vol. 8, No. 2 (April 1970), pp. 158-171.
2. V.E. Hoggatt, Jr., and Marjorie Bicknell, "Convolution Triangles," The Fibonacci Quarterly, Vol. 10, No. 6 (December 1972), pp. 599-609.
3. Charles Jordan, Calculus of Finite Differences, Chelsea Publishing C.o., 1947, pp. 131-132.
4. John Riordan, Combinatorial Identities, John Wiley and Sons, Inc., 1968, pp. 188-191.
** *

LETTER TO THE EDITOR

February 20, 1975
Dear Mr. Hoggatt:
I'm afraid there was an error in the February issue of The Fibonacci Quarterly. Mr. Shallit's proof that phi is irrational is correct up to the point where he claims that $1 / \phi$ can't be an integer. He has no basis for making that claim, as ϕ was defined as a rational number, not an integer.
The proof can, however, be salvaged after the point where p is shown to equal 1 . Going back to the equation $p^{2}-p q=q^{2}$, we can add $p q$ to each side, and factor out a q from the right: $p^{2}=q(q+p)$. Using analysis similar to Mr. Shallit's, we find that q must also equal 1. Therefore, $\phi=p / q=1 / 1=1$. However, $\phi^{2}-\phi-1=-1 \neq 0$; thus, our assumption was false, and ϕ is irrational.

Sincerely,
s/David Ross, Student,
Swarthmore College

