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1. 1WTR0DUCTI0W 

A pythagorean triple is a triple of natural numbers (x,y,z) such that*2 +y2 -z2. Such a triple is called a primitive 
Pythagorean triple if the components are relatively prime in pairs. It is well known [5, pp. 4-6 ] that all primitive 
Pythagorean triples are given, without duplication, by: 

(1.1) x = 2mne y = m2-n2, z = m2+n2. 

where m and n are relatively prime natural numbers which are of opposite parity and satisfy m > n. Conversely, if m 
and n (m > n) are relatively prime natural numbers of opposite parity, then they generate a primitive pythagorean 
triple according to (1.1). 

In this paper I will adhere to the following conventions: 
(a) The first entry of a pythagorean triple will be the even leg of the triple. 
(b) The second entry of a pythagorean triple will be the odd leg of the triple. 
(c) The third entry of a pythagorean triple will be the hypotenuse and will never be called a leg of the triple. 
(d) The natural numbersm and/7 in Eq. (1.1) will be called the generators of the triple (x,y,z). 
Since every prime of the form 4k + 1 can be written as the sum of two relatively prime natural numbers [6, p. 351] 

it follows that there are infinitely many primitive pythagorean triples with the hypotenuse equal to a prime. It is also 
easy to see that there are infinitely many primitive pythagorean triples with the odd leg equal to a prime, by noting 
that for any odd prime p, m = (p + 1)/2 and n = (p - 1)/2 generate a primitive pythagorean triple with the odd leg 
equal to p. It is completely trivial to show that the even leg is never a prime. Thus it is an easy problem to determine 
whether there are an infinite number of primitive pythagorean triples with any one of its components equal to a 
prime. However, the problem changes drastically if we try to determine whether there are an infinite number of 
primitive pythagorean triples with more than one component or some linear combination of the components equal 
to a prime. For example Waclaw Sierpinski [5, p. 6 ] , [7, p. 94] raised the following question: 

SIERPINSKI'S PROBLEM: Are there an infinite number of primitive pythagorean triples with both the hypoten-
use and the odd leg equal to a prime? 
This problem is equivalent to asking for an infinite number of solutions, in primes, to the Diophantine equation 

q2 = 2p - 1. This equivalence is easily proved by noting that if (t,q,p) is a primitive pythagorean triple withp and q 
both prime, then 

q2 = p2-t2 = (p- t)(p + tl 

Since q is prime and p + t > p - t > 0, it follows that q2 = p + t andp -t=h Hence q2 = 2p - 1. Conversely, if 
q2 = 2p - 1, then (p - /, q, p) is a primitive pythagorean triple. Other than this simple transformation, it seems that 
no progress has been made toward a solution to Sierpinski's problem. 

As a result of his involvement with Sierpinski's Problem, Professor LA. Barnett was quite naturally led to the fol-
lowing similar questions. 

*The research for this paper was supported in part by Ohio University Research Grant number OUR 252. 
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QUESTION A: Are there an infinite number of primitive pythagorean triples for which the sum of the legs is a 
prime? 

QUESTION B: Are there an infinite number of primitive pythagorean triples for which the absolute value of the 
difference of the legs is a prime? 

QUESTION C: Are there an infinite number of primitive pythagorean triples for which both the sum of the legs 
and the absolute value of the difference of the legs are prime? 

Questions A and B are both answered in the affirmative [8 ] . In this paper we present a complete characterization 
of those triples which have either the sum or the difference of the legs equal to a prime. Question C is much more 
difficult and is discussed in some detail in this author's Ph.D. dissertation. The results related to Question C will be 
the subject of a future paper. 

A few basic facts about the integral domain 
Zfs/2] = ^a+bsj2\a,h e z\ 

andaboutthe Pell equation*/2 - 2v2 = p, where/? is a prime, will facilitate the discussion of Questions A and B. The 
facts about the integral domain Zf\/2j will simply be stated with references to the proofs. However, the discussion 
of u2 - 2v2 = p in Section 3 will be more detailed because it is quite elementary and is significantly different from 
the usual discussions of this particular Pell equation. 

2. THE INTEGRAL DOMAIN Zfy/2] 

For the remainder of this article, I will follow the usual custom of referring to elements of Z[%j2] as integers and 
elements of Zas rational integers and I will use the following notation: 

If 
a = a+h^/2, 

then 
a = a - hs/2 

is called the conjugate of a . 
N(a) = aa 

is called the norm of a . 
R(a) = a 

is called the rational part of a. 
1(a) « b 

is called the irrational part of a. 
e = 1 + y/2 

is called the fundamental unit in Zl\[2l. 

e-1 - -1+y/2 
is called the inverse of e. 

As usual, a unit of Zfs/2] is defined to be a non-zero element of Z[s/2] which has an inverse in Z[sf2], or equi-
valent^, an element ofZfs/2] whose norm is +1. The set of units of Z[sf2] is precisely the set of 

[4, p. 235], [2, p. 209] and for this reason e is called the fundamental unit ofZfs/2]. 

If a and 8 are integers and there is a unit 7such that a- 8y, then a is called an associate of 5. A non-zero element 
of Z[y/2], which is not a unit, is a prime if and only if it is divisible only by units and associates of itself. It is easily 
shown that if a and 8 are associates, then 

N(a) - +N(6 I 

but the converse is in general not true. However, if a and 8 are both primes and N(a) = ±N(8)$\ma\§ m associate 
of either 5 or 5\ The primes of Z[>j2] are all associates of: 

(1) s/2 
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(2) All rational primes of the form 8k ±3. These are frequently called prime of the second degree. 
(3) All conjugate factors of rational primes of the form 8k + 1. These are frequently called primes of the first degree. 

This result is found in any discussion of the integral domain Z[sj2]f for example [4, p. 240], [2, p. 221]. 
Each of the properties, listed below, in Lemma 2.1, is an elementary consequence of the definitions of the sym-

bols involved. Consequently, they are listed without proof. 
Lemma 2.1: If a and ]3 are integers, then 

a+a = 2R(a) 
a-a = 2^/21(a) 

R(a@) = R(a)R($) + 2l(a)l($) 
Kofi) = l{a)R@} + R(a)W 

R(a$) = R.(a)R(P)-2l(a)l(P) 

1(6$) = Rffflfat ~ fUaMW 

R(ae) = R(a) +21(a) 
l(ae) = R(a) + 1(a) 

1 THE PELL-TYPE EQUATION u2 - 2\/2 = p 
Most number theory books have some discussion of the Pell equation and Pell-type equations. A particularly good 

discussion is to be found in Chapter VI of [3] and a very detailed history is found in Chapter XII of [1 ] . In this pa-
per we only need consider the very special Pell-type equation 

(3.1) u2 -2v2 = p, 
where p is a rational prime. 

As usual, any two rational integers u = a, \f = h will be called a solution of Eq. (3.1) if a2 - 2b2 = p. It follows 
from the previous section that u = a, v = b is a solution if and only if 

N(a+b<sj2) = p. 

From the discussion of primes in Z[y/2], it is clear that Eq. (3.1) has a solution if and only if the rational prime p 

is of the form 8k +1. 

If 
N(a+bsj2) = p, . 

then the four solutions 

u = a, v = b; u = a, t/ = -b; u = ~a, u - b; u = ~a, v = -b 

are said to be the solutions obtained from a + bsj2. Notice that the same four solutions are obtained from each of 

a + bs/2, a+bs/2, -(a + by/2) and -(a + by/2 , 

It is easily shown [4, p. 242] that if a= a + b^2 and N(a) = p, then all solutions of Eq. (1.2) are obtained from 

\ae2t\t^z\ 
and conversely, every element of 

\ae2t\tez} 
yields a solution of Eq. (3.1). 

The equation 
u2 ~2v2 = p 
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may easily be transformed to the equation 

= 7, 

which is the standard equation of a hyperbola. Thus integer solutions of Eq. (3.1) are easily associated with lattice 
points on the above hyperbola. Figure 1 is a graph of this hyperbola. Reference to Fig. 1 makes it clear that if u = a 

> 0 and v = b > 0 is a solution of Eq. (3.1), and then 

\fp < a < s/2p and 0 < b < yjp/2 

are equivalent The remainder of this section will show that there is exactly one solution which satisfies these 
conditions. 

Figure 1 

If p is a rational prime of the form 8k + 1, then the set 

S = | (u,v) \u e Z,v e Z,u > 0,v > 0, u2 - 2\/2 = p X 

is infinite and contains an element (a,b) with minimal first component. Since 

(a + bs/2)e~2 = (3a - 4b) + (3b - 2a)^/2 

it follows that 
u = 3a~4b and v = 3b-2a 

satisfy 
u2 -2v2 = p. 
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Mote that 
a2 - 2b2 = p > 0 

implies that b < a/y/2. Thus 

3a-4b > 3a- 4asj2 = a(3 - 2y/2) > 0. 
Hence either 

(3a - 4b, 3b -2a) or (3a - 4h, 2a - 3b) 

is in 5. In either case we have 
a < 3a-4bf 

which implies that 
4b2 < a2 = p+2b2, 

and this in turn implies that b < sJp/2 . Hence there is at least one solution u = a,v = b of t/2 - 2v2 = p with 
V P < a < s/2p and 0 < b < s/p/2 . 

To show that there is only one solution of (3.1) which satisfies the above inequalities it is helpful to observe that: 
For every 0 e Z[y/2], 

R($e2) = 3R($)+4l($) 

me2) = 2R(P) + 3/@) 

R($e~2) = 3R0) - 41(0) 

I (fie-2) = 3l(p)-2R($). 

It follows from these equalities that if R((3) > 0 and l($) > 0, then 

R($e-2) < R((3e2) and R($e2t) < R($e2t+2) 

for all t > 0. Note also that if R(fi) > 0, then /($) < 0 implies that 

R(fie'2t) < R($e~2t~2) 
for all f > 0. 

Let a = a+b<sf2 with 
s[i> < a < \[2p and O < b < yJp/2 

and let u = a, v = b be a solution of (3.1). Then 
ae2 = (3a+4b) + (2a + 3b)^2 

and 
ae"2 = (3a - 4b) + (3b - 2a)s]2 . 

Clearly 
3a-4b < 3a+4b 

and from the previous remarks it follows that the rational parts oiae2t, t>Q, form a strictly increasing sequence. 
If we assume that 3b- 2a > 0, then 9b2 > 4a2 and hence 

-4p+b2 = -4(a2-2b2) + b2 > O. 

But then b2 >4pand 

b > 2sJ$ > (1/s/2)sjp = sfel2 . 
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This contradiction shows that 3b - 2a < 0 and from the previous remarks it follows that the rational parts of ae~2t, 

t>\, form an increasing sequence. 
If we assume 3a - 4b < a, then a2 < 4b2 and hence 

p - 2b2 = a2 - 2b2 - 2b2 = a2 - 4b2 < 0 . 

But then sJp/2 < b and we conclude that 

3a-4b>a>^/p>®. 

It now follows that if 
3a - 4b > s/2p , 

,~2tt then the rational part of ae will be greater than s/2p for all t^O. 

If we assume 
3a-4b < y/2p , 

then by squaring both sides and collecting terms we have 

17a2 - Wp < 24asJ(a2 -p)/2 . 

Note that 

17a2- Wp = 7a2 + 20b2 > 0. 

Squaring both sides again and simplifying yields 

a4 - 52a2p + WOp2 < 0, 
which can be written as 

(a2 - Wp)2 < 32a2p. 

This is a contradiction because 

a2 - Wp < 2p- Wp = -8p 

and hence 

(a2 - Wp)2 > 64p2 = (32p)(2p) > 32pa2 . 

Thus 
3a - 4 b > s/2p . 

This establishes that there is at most one solution u = a,v = b such that ^Jp <a< s/2p . 

The material in this section is summarized in Lemma 3.2 below: 

Lemma 3.2. If p is a rational prime of the form 8k + 1, the equation u2 - 2\/2 = p has exactly one solution 
u = a,v = b such that the following two equivalent statements are true: 

(i) y/p < a < ^/2p 

(ii) 0 < b < y/pTF. 

The equation u2 - 2v2 = p has Infinitely many solutions, all of which are obtained from 

(a + b^I)e2t, 

where t is any rational integer and u = af v = b is any solution of u2 - 2v2 = p. 
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The unique solution which satisfies (i) and (ii) will be called the fundamental solution oft/2 - 2v2 = p. 

4 PRIMITIVE PYTHAGOREAN TRIPLES WITH SUM OF LEGS EQUAL TO A PRIME 

The theorems of this section show that if (x,y,z) is a primitive Pythagorean triple with * + y equal to a prime/?, 
then p is of the form 8k + 1, and conversely, if p is a prime of the form 8k + 1, then there is a unique primitive Py-
thagorean triple (x,y,z) such that x + y = p. Since there are infinitely many primes of the form 8k + 1, this yields an 
affirmative answer to Question A of Section 1. 

Theorem 4.1. If (x,y,z) is a primitive pythagorean triple and/? is a prime divisor ofx +y or \x -y\, then p 

is of the form 8k + I 

Proof. Suppose/? divides*-/-)/ or \x - y\. IMote this implies (x,p)= (ytp)= I, a n d x ^ ^ y (mod/?) so that 

(1) 2x2 =x2+y2 = z2 (mod/?). 

By definition, A-2 is a quadratic residue of p. The congruence (1) implies 2x2 is also a quadratic residue of/?. If/? 
were of the form 8k + 3, then 2 would be a quadratic nonresidue of/? [3, pp. 136-139] and since*2 is a quadratic 
residue of/?, 2x2 would be a quadratic nonresidue of/?, contradicting (1). Thus/? must be of the form 8k + I 

Corollary. If x and y are the legs of a primitive pythagorean triple, then bo th* + y and \x - y\ are of the form 
8k + l 

This corollary is immediate from the theorem but it should be pointed out that the corollary may be proved di-
rectly by considering the following two cases: 

m = 2r, n = 2t + 1 

m = 2r, + I n = 2t, 

where m and n are the generators of the primitive pythagorean triple. 

Theorem 4.2. For every prime /? of the form 8k + 1 there exists a primitive pythagorean triple (x,y,z) such 
that* * ] / = /?. 

Proof. Let/? be a prime of the form 8k + /and \tf.u = a,v = b be the fundamental solution oft/2 - 2v2 = p. Let 
m = a - h and n = h. Note (m,n) = 1 because (afh) = 1. Clearly m and n are of opposite parity because m + n = a=1 

(mod 2). If m </? = /?, then 

p+2b2 = a2 = (n + m)2 < 4b2 

and thus/? >p/2, a contradiction. Hencem >/?. Thus/?? and/? generate the primitive pythagorean triple 

* = 2mn, y = m2 - n2, z = m2 + n2 . 

For this triple 

x + y = 2mn + m2 - n2 = (m + n)2 - 2n2 = a2 - 2b2 = /?. 

Theorem 4.3. If /? is a prime of the form 8k + /, then there is exactly one primitive pythagorean triple (xfy,z) 

such that* + y = p. 

Proof Let m and/? generate a primitive pythagorean triple (x,ytz) such tha t * + y = p. Then 

(m + n)2 -2n2 = p. 
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Since m > n it follows that 

p = (m+n)2-2n2 > (2n)2 - 2n2 = 2n2, 

which implies that n < ^Jp/2 . Thus u = m + n, v = n is the fundamental solution of u2 - 2v2 - /?, and hence, 
by Lemma 3.2, m and n are uniquely determined. 

5. PRIMITIVE PYTHAGOREA1 TRIPLES WITH DIFFERENCE QF LEGS EQUAL TO A PRIME 

The material in this section is related to Question B of Section 1. The first theorem provides an affirmative answer 
to Question B by showing that every prime of the form 8k + 1 is equal to the difference of the legs of some primi-f 
tive Pythagorean triple. The second theorem shows that for every prime of the form 8k + 1 there is an infinite num-
ber of primitive Pythagorean triples with the difference of legs equal to that prime. W.P. Whitlock, Jr. [8] discusses 
briefly these same two theorems and points out that these methods were essentially known to Frenicle. The re-
mainder of this section is devoted to the characterization of ail primitive pythagorean triples with difference of legs 
equal to a prime. 

Theorem 5.1. For every prime/? of the form 8k+1 there is a primitive pythagorean triple (x,y,z) such that 
\x-y\=p. 

Proof. Let/7 be any prime of the form 8k + 1 and le\u = a, v = b be the fundamental solution off/2 - 2\t2 = p. 

Then, as in Theorem 4.2, it is easily shown that m = a + b and n = h generate a primitive pythagorean Xt\$\$(x,yfz) 

with x-y = -p. 

If p is a prime of the form 8k + /, then, as pointed out in Section 4, there is a unique primitive pythagorean triple 
(x,y,z) such that x + y = p. The fact that there is no such uniqueness when discussing the difference of legs follows 
from the theorem below. 

Theorem 5.2. If m,n (m >n) generate a primitive pythagorean triple (xfy,z) then M = 2m + n and N = m gen-
erate a primitive pythagorean triple (X, Y,Z)such that \X- Y\=\x -y\. 

The proof is computational and is left to the reader. 
The previous two theorems make it easy to show that for each prime p of the form 8k+1 there is an infinite num-

ber of primitive pythagorean triples (x,y,z) such that \x - y\ = p. This is done by defining an infinite sequence 

of primitive pythagorean triples (xj,yj,Zj) such that \xj- yj\= p for a l l / 

Definition 1. Let p be a fixed prime of the form 8k+ /and let sand b be the unique natural numbers such 
that 

a2 - 2b2 = p, yjp < a < *j2p, and 0 < b < y/p/J. 

Define the sequence J Tjfp) I as follows: 

Let T0(p) be the primitive pythagorean triple generated by m^ = a+b and/7 = & For ally > 1, define Tj(p) to be 
the primitive pythagorean triple generated by 

mj = 2m j-1 + rij-1, and nj = m^ 1. 

Figures 2 and 3 illustrate the sequence | Tj(p) |», 

An examination of a table of primitive pythagorean triples shows that for each prime/? of the form 8k + /there 
are primitive pythagorean triples (x,y,z) with \x - y\ = p which are not in | Tjfp) I. The next theorem will be used 
to show that for each prime /? of the form 8k+1 there is in fact another infinite sequence | Tj(p)l of primitive 



1975] OR DIFFERENCE OF LEGS EQUAL TO A PRIME 271 

61 =5 



272 PRIMITIVE PYTHAGOREAN TRIPLES WITH SUIVS [OCT. 

El 
JZ 

ii II £J S2 

5 V ? * k" 

JO 

I V *?3- * - - K 

II II 8? B 
5 *= s : kc 

El 

1 

CM 

El 
sz 
I -

S: o» t ^ 
II II c\T •-. 

5 V 

IN 

°> "* jrf S; 
II It ^O *2 
5 ^ ° ^ K 

0 0 



1975] OR DIFFERENCE OF LEGS EQUAL TO A PRIME 273 

Pythagorean triples (xj, yjf zj) such that 

W-yj\ = p 

f o r / > / and 

x'j + Vl* P 

f o r / - ft 

Theorem 5.3. If m and n (m >n) generate a primitive Pythagorean triple (x,y,z), then M = 2m - n and N = m 

generate a primitive Pythagorean triangle (X, Y,Z) such that \X - Y\= x + y. 

The proof is computational and is left to the reader. 

Definition 2. Let/?, a and b be the same as in the construction to | Tj(pn. Define the sequence j T)(p)\ 

as follows: Let T'0(p) be the triple generated by m'0 = a - b and n'0 = b. Let T\(p) be the triple generated by 

m\ = 2ml ~ no m^ n\ = m'o ' 

For all / > 2, define Tj(p) to be the primitive Pythagorean triple generated by 

mj = 2mj-i+nj._1 and nj = mj-i . 

Figures 2 and 3 illustrate the sequence I Fj(p) I 

Theorem 5.4. Let p be a prime of the form 8k + 1. If 7" is the set of triples 

{Tj(p)\j = 0, 1,2,-..\ 

and r is the set of triples J Tj(p)\j= 1,2, - i , then Tn V=<t>. 

Proof. Suppose there is a Tr(p) in 7" and a T's(p) in V such that r> 1, $^2 and Tr(p)= T's(p). Then mr =m's 

and nr = n's and hence 

mr„i = nr = n's = m$-i, 

which in turn implies 

2m's„i+nr„i = 2mr-i+nr-i = mr = m's = 2m's- / + n's- / , 

and thus/?r_/= A?5_/. Hence 

Tr^(p)= T's„7(p). 

Repeating this argument a finite number of times results in one of the following cases: 

Case 1. Tjp) = T's-r(p) if s > r+1. 

Case 2. Tjp) = Tjp) if s = r+1. 

CaseS. Tr„s(p) = T\(p) if s < r+ I 

To complete the proof it suffices to show that each of these cases is impossible. In Case 1, 

b = n0 = n's„r = m/
s^1 > n/

s^1 = - = m% > n'0 = b, 

a contradiction. In Case 3; 
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/7V-s-/ = nr„s - n'i = m'o 
and 

2mr-s-,1 + nr-s-i = mr-s = rn'i = 2m'o = HQ. 
Hence 

0 < nr-s.f = -n'0 < 0 

which is again a contradiction. 
The above description of the sequences 

\T1(P)\ and {77/Wf 
gives a convenient method for constructing a triple of the sequence from the preceding triple. It is also possible to 
give an explicit formula for a triple in the sequence in terms of the fundamental solution of u2 - 2v2 = p. Certain 
properties of the triples in the sequence become more accessible when viewed in this way. One such property is 
stated in Theorem 5.6. 

Theorem 5.5. Let p be a prime of the form 8k + I Letu = a,v = h be the fundamental solution of 

u2 - 2v2 = p 

and let 
a = a + byj2 . 

(1) For/ > 0, Tj(p) is generated by: 

mj = R(aej) + l(aej) = l(aei+1) 

nj = l(aej). 

(2) For/ > 0, Tj(p) is generated by: 

mj = R(dej) +/(EeJ) = l(aei+1) 

nj = /(aeJ'l 

(3) For/ > 0, Tjfp) is generated by: 

J+1 _-zj+1 J+1 +TI+1 

_ e>-
' 2-J2 

= e' -e1
 a + e' +e' 

(4) For/ > 0, Tjfp) is generated by: 

' 2s/2 
ffY). — a _ fj 
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Proof (of (1)). By construction, T0(p) is generated by 

m0 = a+b = R(a&) + I(a&) 

and 
n0 = b = /(ae°). 

Make the induction hypothesis that Tjfp) is generated by 

mj = R(aeJ) + l(aej) and nj = l(a^). 

Then by construction, Tj+ilp) is generated by 

mj+1 = 2R(aei) + 3l(aeI) and nj = R(aej) +i(aej I 

By Lemma 2.1, 

R(aei+1J = Rfae1) + 21(aej) and l(aei+1) - Rfae1) + l(ae'). 

Now it is clear that 

mj+i = R(a€?+1) + l{ae!+1) + l(a<J+1) 

and 
nM = l(aej+1). 

It follows directly from Lemma 2.1, that 

rttj = R(aej) + i(aej) = t(aeJ+11 

Thus the formulae in (1) hold for a l l / > 0. The formulae in (2) are proved in exactly the same way. The formulae in 
(3) are proved by using Lemma 2.1 to get 

ms = R(aei) + I(aei) = i(aei+1) = l(ei+1 )R(a) + R(ej+1 )l(a) = *?'~JJ+1
 a + €H±£H h 

J 2sj2 2 

m = i(aej) = i(eJ')R(a) + R(eJ)I(a) = ^-=IL B + ^L±E b . 
J 2y/2 2 

The formulae in (4) follow from (2) in exactly the same manner. 

In Theorem 5.4 it was shown that the sequences j Tj(p) I and | Tjfp) I were disjoint. With Theorem 5.5 it is 

possible to show that these sequences are exhaustive in the sense that they contain every primitive pythagorean triple 
(xfy,z) with \x - y\ = p. To prove this result, stated below as Theorem 5.6, it will be shown that if (x,y,z) has \x - y\ 

= p, then its generators must be the same as those listed in Theorem 5.5. 

Theorem 5.6. Let/7 be a rational prime of the form 8k + I if T~ (x,y,z) is a primitive pythagorean triple such 

that \x - y\= pf then T is in one of the sequences j Tjfp) I or I Tjfp) I . 

Proof. Let u = a, v = b be the fundamental solution of u2 - 2v2 = p and \&ta-a + b>j2. If m and n are the gen-
erators of T= fx,y,z) then 

y-x - fm-n)2 -2n2. 
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Hence 
N(a) = p = +N([m - n] + n\fc). 

Since a is a prime, it follows that either a or a is an associate of 

(m - n) + nsf2 . 

Sf a is an associate of (m - n)+n^J2, then by definition there is an integer t such that 

aet = (m- n) + r\s]2 , 

or 

-aet = (m ~ n) + ns/2 . 

This second equaSity is impossible because 

-ae* < 0 < (m-n) + ns/2 . 

Thus if a is an associate of (m-n)+ n<j2, then 

ae* = (m - n)+ n^/2 

for some integer t Note that t < 0 implies that 

a > aet = (m - n)+n^/2 > a + bs/2 - a, 

which is a contradiction. Thus if a is an associate of (m - n) + r\\f2, there is an integer t > 0 such that 

aef = (m-n) + n>j2 . 

It is now clear that, in this case, T is generated by 

m - Rfae*)+ 1(0,6*) 
and 

n = Hae*), 

with t > 0, so that T is in | Tjfpt [ . 

If a is an associate of (m - n)+n>j2, then by definition, there exists an integer t such that 

~aet = (m - n) + ns/2 , 
or 

- a e r = (m - n) + t7s/I . 

This last equality is impossible, because a > 0 and aa=p imply that a > 0, and hence 

-ae f < 0 < (m - n) + r\sf2 . 
Note that if 

ae f = (m-n) + ny/2 and f < 0, 

then 
a > aer = (m - n)+ns/2 > a + bs/2 = a > a , 

which is impossible. 
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Thus if a is an associate of (m - n)+ nsjl, then there is an integer t > 0 such that 

ae f = (m- n) + n*j2 . 

Clearly, in this case, T is generated by 

m = Rfae^ + Kae*) and n = 1(5.6*), 

with t > 0, so that T is in | Tj(p) I . This completes the proof. 

In the description of the two sequences | Tj(p) I and | Tj(p) I it is obvious that the sequence jTj(p) I is 

closely related to the unique primitive pythagorean triple (x,y,z) with x + y = p. The following theorem is used to 

show that the sequence | Tj(p) j- is also related to the unique primitive pythagorean triple (x,y,z) w i t h * + y = p. 

Theorem 5. 7. If m and n (m > n) generate a primitive pythagorean triple (x,y,z), then M = 2n + m and N = 

n generate a primitive pythagorean triple (X,Y,Z) such that \X - Y\=x + y. 

The proof is computational and is left to the reader. 
If p is a prime of the form 8k + I, then as in Theorem 4.2P the unique primitive pythagorean triple (x,y,z) with 

x + y = p, is generated by m = a - b and n = b, where u = a, v = b is the fundamental solution oft/2 - 2v2 = p. By 
Theorem 5.7, 

M = 2n + m=a+b and N = n = b 

generate a primitive pythagorean triple (X, Y,Z) such that 

\X-Y\ = x+y = p. 

An examination of the generators M and N shows that (X,YfZ) is the triple labeled TJp) in the discussion of 

{wY 
6. SUMMARY 

In this paper it has been shown that the sum and the difference of the legs of a primitive pythagorean triple must 
be of the form 8k + 1, Conversely, if p is a prime of the form 8k + 1, there is a unique primitive pythagorean triple 
(x,y,z) with x + y = p, but there are two infinite disjoint sequences of primitive pythagorean triples with the differ-
ence of the legs equal to p for each triple in the sequences. Furthermore, every primitive pythagorean triple (xty,z) 

with \x - y\ = p is in one of these sequences. Figure 2 outlines a general method for constructing these triples and 
Fig. 3 illustrates the procedure with p = 137. Finally, explicit formulae for the generators of each triple in the se-
quences are given in terms of the fundamental solution of u2 - 2\/2 = p. 
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