THE RANK OF APPARITION OF A GENERALIZED FIBONACCI SEQUENCE

H. C. WILLIAMS
University of Manitoba, Winnipeg, Manitoba, Canada

1. INTRODUCTION

In [4] Waddill and Sacks discuss a generalized Fibonacci sequence $\left\{K_{n}\right\}$, where $K_{0}=0, K_{1}=1, K_{2}=1$, and

$$
K_{n+1}=K_{n}+K_{n-1}+K_{n-2} .
$$

Several other properties of this sequence, often called the Tribonacci Sequence, may be easily deduced from the more general results of Miles [2] and Williams [5].
We give here the definition of the rank of apparition of an integer m in the sequence $\left\{K_{n}\right\}$.
Definition. The rank of apparition of an integer m in the sequence $\left\{K_{n}\right\}$ is the least positive integer ρ for which

$$
K_{\rho-1} \equiv K_{\rho} \equiv 0(\bmod m)
$$

This definition is analogous to that for the ordinary Fibonacci sequence (see, for example, Vinson [3]). In [5] it was shown that such a rank of apparition always exists for any integer m; the purpose of this note is to determine, more precisely than was done in [5], the rank of apparition of any prime p.

2. PRELIMINARY RESULTS

We shall require a theorem of Cailler [1], which we only state here.
Theorem. Let R, S be given integers and let $p(>3)$ be a prime such that $(p, R)=1$. Let $\Delta=4 R^{3}+27 S^{2}$ and put q equal to the value of the Legendre symbol ($3 \Delta \mid p$).

If $p \equiv-q(\bmod 3)$, there is only one root in GF[p] of
(2.1)

$$
x^{3}+R x+S \equiv 0 \quad(\bmod p)
$$

If $p \equiv q(\bmod 3)$, put $m=(p-q) / 3$. There are three roots of (2.1) in $G F[p]$ if

$$
\text { (2.2) } \quad U_{m} \equiv 0(\bmod p)
$$

If (2.2) is not satisfied, there are no roots of (2.1) in GF[p]. Here U_{n} is the Lucas Function defined by the recurrence relation

$$
U_{n+1}=P U_{n}-Q U_{n-1}
$$

and the initial conditions $U_{0}=0, U_{1}=1 . P$ and Q are determined from the relations

$$
3 Q \equiv-R, \quad R P \equiv-3 S \quad(\bmod p)
$$

We also require the following
Theorem. (Williams [5]). If $K_{n-1} \equiv K_{n} \equiv 0(\bmod m)$ and ρ is the rank of apparition of m, then ρ is a divisor of n. Finally, we need the fact [5] that

$$
K_{n}=\frac{1}{D}\left|\begin{array}{lll}
1 & a & a^{n+1} \tag{2.3}\\
1 & \beta & \beta^{n+1} \\
1 & \gamma & \gamma^{n+1}
\end{array}\right|
$$

where a, β, γ are the three roots of

$$
x^{3}-x^{2}-x-1=0
$$

and D is the value of the Vandermonde determinant

$$
\left|\begin{array}{lll}
1 & a & a^{2} \\
1 & \beta & \beta^{2} \\
1 & \gamma & \gamma^{2}
\end{array}\right|
$$

3. THE MAIN RESULT

Let $F(x)$ be the polynomial $x^{3}-x^{2}-x-1$. If $F(x)$ is irreducible modulo p, let $G=G F\left[p^{3}\right]$ be the splitting field of $F(x)(\bmod p)$ and let $\theta, \phi=\theta^{p}, \psi=\theta^{p^{2}}$ be the roots of

(3.1)

$$
F(x)=0
$$

in G. Then in G we have

$$
\theta \phi \psi=1=\theta^{1+p+p^{2}}=\phi^{1+p+p^{2}}=\psi^{1+p+p^{2}}
$$

From (2.3) we have
If $p \equiv 1(\bmod 3)$,

$$
\begin{aligned}
& K_{p^{2}+p}=K_{p^{2}+p+1}=0 \\
& \theta^{\left(p^{2}+p+1\right)(p-1) / 3}=1
\end{aligned}
$$

hence,

$$
\theta^{\left(p^{2}+p+1\right) / 3}=\theta^{p\left(p^{2}+p+1\right) / 3}=\phi^{\left(p^{2}+p+1\right) / 3}=\psi^{\left(p^{2}+p+1\right) / 3}
$$

and

$$
K_{\left(p^{2}+p-2\right) / 3}=K_{\left(p^{2}+p+1\right) / 3}=0 .
$$

If $F(x)$ is factorable modulo p into a linear and irreducible quadratic factor, let $G=G F\left[p^{2}\right]$ be the splitting field of $F(x)$ and let $\theta \in G F[p], \phi, \psi=\phi^{\rho}$ be the roots of (3.1) in G. If $p \equiv 1(\bmod 3)$,

$$
\phi^{\left(p^{2}-1\right) / 3} \theta(p-1) / 3=1
$$

thus,

$$
\theta^{\left(p^{2}-1\right) / 3}=\phi^{\left(p^{2}-1\right) / 3}=\psi^{\left(p^{2}-1\right) / 3}
$$

and
(3.2)

$$
K_{\left(p^{2}-4\right) / 3}=K_{\left(p^{2}-1\right) / 3}=0 .
$$

If $p \equiv-1(\bmod 3)$, we use the simple fact that
(3.3)

$$
x^{2}(x-1)^{3}=4
$$

if $F(x)=0$. Hence, in G

$$
\left(\phi^{2}(\phi-1)^{3}\right)^{\left(p^{2}-1\right) / 3}=4^{\left(p^{2}-1\right) / 3}
$$

and

$$
\phi^{\left(p^{2}-1\right) / 3}=\theta^{\left(p^{2}-1\right) / 3}=\psi^{\left(p^{2}-1\right) / 3} .
$$

We again have (3.2).
If $F(x)$ is factorable modulo p into three linear factors, let $\theta, \phi, \psi \in G F[p]$ be the roots of (3.1). We have

$$
\theta^{p-1} \equiv \phi^{p-1} \equiv \psi^{p-1} \equiv 1(\bmod p)
$$

and

$$
K_{p-2} \equiv K_{p-1} \equiv 0(\bmod p)
$$

If $p \equiv 1(\bmod 3)$, from (3.3)

$$
\theta^{2(p-1) / 3} \equiv 4^{(p-1) / 3} \equiv \phi^{2(p-1) / 3} \equiv \psi^{2(p-1) / 3}(\bmod p) ;
$$

hence, we have

$$
\theta^{(p-1) / 3} \equiv \phi^{(p-1) / 3} \equiv \psi^{(p-1) / 3}(\bmod p)
$$

and

$$
K_{(p-4) / 3} \equiv K_{(p-1) / 3} \equiv 0(\bmod p)
$$

Since

$$
(-6)^{3} F(x) \equiv(-6 x+2)^{3}+48(-6 x+2)+304
$$

we can put together the above results and the theorems of Section 2 to obtain the following
Theorem. (The law of apparition for the Tribonacci sequence). Let U_{n} be defined by the linear recurrence

$$
U_{n+1}=19 U_{n}-16 U_{n-1}
$$

and the initial values $U_{0}=0, U_{1}=1$.
If p is a prime $(\neq 2,3,11)$ and $p \equiv-(33 \mid p)(\bmod 3)$, the rank of apparition ρ of p is a divisor of $\left(p^{2}-1\right) / 3$. If
 a divisor of $\left(p^{2}+p+1\right) / 3$. If $p \equiv(33 \mid p) \equiv-1(\bmod 3), \rho$ is a divisor of $p-1$ when $U_{(p+1) / 3}$ is divisible by p; if p does not divide $U_{(p+1) / 3,} \rho$ is a divisor of $p^{2}+p+1$. If $p=2, \rho=4$; if $p=3, \rho=13$; and, if $p=11, \rho=110$.
The last results were obtained by direct calculation.

4. TABLE

We give here a table of values of p and ρ for all $p \leqslant 347$.

p	ρ	p	ρ	p	ρ	p	ρ
2	4	67	1519	157	8269	257	256
3	13	71	5113	163	54	263	23056
5	31	73	1776	167	9296	269	268
7	16	79	1040	173	2494	271	24480
11	110	83	287	179	32221	277	12788
13	56	89	8011	181	10981	281	13160
17	96	97	3169	191	36673	283	13348
19	120	101	680	193	1552	293	28616
23	553	103	17	197	3234	307	10472
29	140	107	1272	199	66	311	310
31	331	109	330	211	1855	313	32761
37	469	113	12883	223	16651	317	100807
41	560	127	1792	227	17176	331	36631
43	308	131	5720	229	17557	337	5408
47	46	137	18907	233	9048	347	40136

REFERENCES

1. C. Cailler, "Sur les congruences du troisiéme degré," L'Enseig. Math., Vol. 10 (1908), pp. 474-487.
2. E.P. Miles, Jr., "Generalized Fibonacci Numbers and Associated Matrices," Amer. Math. Monthly, Vol. 67 (1960), pp. 745-752.
3. J. Vinson, "The Relation of the Period Modulo m in the Fibonacci Sequence," The Fibonacci Quarterly, Vol. 1, No. 2 (April 1963), pp. 37-45.
4. M.E. Waddill and L. Sacks, "Another Generalized Fibonacci Sequence," The Fibonacci Quarterly, Vol. 5, No. 2, (April 1967), pp. 209-222.
5. H.C. Williams, "A Generalization of the Fibonacci Numbers," Proc. Louisiana Conference on Combinatorics, Graph Theory, and Computing, Louisiana State University, Baton Rouge, Mar. 1-5, 1970, pp. 340-356.
