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INTRODUCTION 

In 1954, H. L Aider [1 ] showed that, as a generalization of the Rogers-Ramanujan identities, there exist polynom-
ials G/</n(x) such that 

d) H f/-x"r' - £ Gk>»M 

nm±A2k+n n=0 (1-X)<1-X*)-(1-Xn) 

and 

(2) 5 ff-xY'1 = £ GkrnMx" 

where k is a positive integer and the left-hand side of (1) is the generating function for the number of partitions into 
parts & 0, ±k (mod Ik + 1), while the left-hand side of (2) is the generating function for the number of partitions in-
to parts ^ 0, +1 (mod 2k + 1). As Aider remarks, when/r = 2, identities (Hand (2) reduce to the Rogers-Ramanujan 
identities for which £2,/?(x)=x . 

Alder showed that identities similar to (1) and (2) exist for the generating function for the number of partitions 
into parts £ 0, ±(k - r) (mod 2k + 1) for all r with 0 < r < / r - 1, so that, for a given modulus 2/r + 1, there exist k 

such identities. 
We shall show in this paper that a similar generalization is possible for recursion formulae for the number of un-

restricted or restricted partitions of n. The best known of these is the Euler identity for the number of unrestricted 
partitions of n: 

(3) pM=Y,(-ni+1p[n-3-^fJ-) f 
J 

where the sum extends over all positive integers/for which the arguments of the partition function are non-negative. 
Another recursion formula was obtained by Hickerson [2 ] , who showed that q(n), the number of partitions of/? in-
to distinct parts, is given by 

00 

(4) q(n) = Y. (-DJ'p(n-(3j*+j)), 
y«-oo 

where the sum extends over all integers/for which the arguments of the partition function are non-negative. 
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We shall show here that these and other recursion formulas are special cases of the following 
Theorem. If we denote the number of partitions of n into parts £ 0, ±(k - r) (mod 2k +a) by /?'(0, k- rt 2k 

+ a;n], then f o r 0 < / - < £ - /, 

(5) p>(o,krr.2k + a;n)=^t-1)lp[n-&^^ . 

J 

where the sum extends over all integers/for which the arguments of the partition function are non-negative. 
Proof. Using Jacobi's triple product identity 

oo 

n (1-y2n+2)(1+y2n+1z)(1+y2n+1z-1)= Y y?J . 
n=0 ;_ 

y=r-oo 
With 

y s x(2k+a)/2t z = _x(2r+a)/2 ^ 
we obtain 

(2k+a)j2+(2r+a)j 
fl (1 „x(2k+a)n+(2k+a)j(j _x(2k+a)n+k+r^j(j _x(2k+a)n+k-rj = y ^ (^px 2 

n=0 ~ 

Dividing both sides by 
CM 

Tin-xs), 

the left-hand side becomes the generating function for the number of partitions of/7 into parts £ 0 , +(k- r) (mod 
2k + a). Equating coefficients of xn in the resulting equation yields the theorem. 

Corollary 1. For r = 0, we obtain the following recursion formula 

(6) mwk+Vn) = Y,(-^'p["-<2k+f+ai) . 
J 

where it shall be understood here and henceforth 

E 
/ 

denotes a sum over all integers for which the arguments of the partition function are non-negative. 
Corollary 2. If in (6), we letk = a = 1,thenp'(0,1,3;n) = 0and £M4,(„_aL£/ y0 

j¥0 ' 
which is the Euler identity (3). 

Corollary 3. If in (6), we let k - 2, a = 1, we obtain a recursion formula forp'(0,2,5;n), which by the first 
Rogers-Ramanujan identity is equal to the number of partitions of n into parts differing by at least 2, or qjnj. 
Therefore we have 

(7) qiM = X*(-1)lp( n-^-). 
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Corollary 4. If in (5), we let r = k - a, we obtain 

(8) m*.2k+a;n) = Y.(-^p{"~(1]Lt^-k^ 
1 

Corollary 5. Sf in (8), we let k = a = 2, we obtain a recursion formula for/?Y0,2,6;/?A which is equal to q(n), 
the number of partitions of n into odd parts, so that we have 

q(n) = J^f-Vtpfn-W+W, 
i 

which is (4). 
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[Continued from P. 336.] („aMb/„a) « (a/b)(b/a)(- 1/b) 

= ((-1/a)/(-1/b))(-1/b) 

= - / 

f-1/a) t (-1/b) = -1. 

(~a/b)(b/-a) = ((-1/-a)/(-1/b)i. 

(a/-b) - (a/b)(a/-1)' 

(-b/a) = (b/aH-Va). 

(a/-b)(-b/a) = (a/b)(b/a)(-1/a) 

= ((-1/a)/(-1/b))(-1/a) 

= -1 

(-1/a) t (-1/b) = 1. 

(a/-b)(-b/a) = ((-1/a)/(-1/-b)). 

(-a/-b) = -(a/b)(a/-1)(-1/b) 

l-bl-a) = -(h/a)(b/-1)(-1/a). 

if and only if 

Therefore, 
(2) 

Also, 

and 

Since (a/-1)= 7, therefore 

if and only if 

Therefore, 
(3) 

Finally, 

and 

[Continued on P. 342.] 


