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A finite set / of natural numbersis to be a/ternating [1] provided that there is an odd member of / between any two
even members and an even member of / between any two odd members; equivalently, arranging the elements of / in
increasing order yields a sequence in which consecutive elements have opposite parity. In this note we compute the
number a,, , of alternating subsets of {1, 2,--, n } with exactly relements, 0 <r<n.

As a matter of notation we denote an alternating r-subset of { 1,2, «,n } by fg,, 9,, -, g,; nJ, where
we assume g, < g, < - <g,. ,

Let £, , (resp. Op, ) be the number of alternating subsets of { 1,2,,n } with r elements and with least ele-
ment even (resp. odd). It follows that
(1) anr = Enr* Onyr (1 <r<n)
For reasons which will soon become evident we set £, 9 = O, p = 1; hence, a5 o = 2 for n > 0. In addition,
setagp= 1.

Lemma. For any positive integer m,

Emtt,r = Omyr . 0<r<m+1.
Proof. The case r = 0is trivial. If r=m + 1, then
Emtim+1 = 0= Omm+1.
For 1 <r < m consider the correspondence
(qxl [/ PYRE Gr;m + 7) A (01 - 7/ q, — 1» gy Il.m),

If g, is even then it easily follows that the number of r-subsets of % 1,2, m+1 } with least element even
equals the number of r-subsets of { 1,2,,m } with least element odd, g.e.d.

Proposition 1. Forany positive integer m, and 1 <r<m + 1,
(2) am+1,r = am,r-1*8m-1,r -

Proof.  The casem = 1is obvious, so assume m > 2. If r = 1 then
am+1,1 = m+1 while am,0 = 2, am-7 =m-—1;

hence (2) holds. For r > 1 we divide the r-subsets of { 1,2, o, m+1 } (denoted as usual by (g,, 9,, .4 ;
m + 1)} into two groups:

(i) g, =1.Then(q,, -, g,; m+ 1)isan (r—7)-subset of { 1,2,-,m+1 } which has an even least element,
so there are £547, -7 Such subsets. .

(i) g, = 2. Then the correspondence given in the previous lemma shows that the number of such r-subsets is
ﬂm’r -

We thus conclude that
(3) am+1,r = Em+1,p-1 *am,r
whence it follows that

(4) am+t,r = Em+1,r-1* Empr1*am~1,r .

325



326 ON ALTERNATING SUBSETS OF INTEGERS {DEC.

Applying the Lemma, Eq. (4) becomes

(5) am+t,r = Omy-1*Eme-1*2m-1,r -
Substituting (1) in (5) yields (2), g.e.d.
We remark that (2) holds for m = 0 if we define a,,=0if n < 0orr <0.
The recurrence {2) can be solved using the standard technique of generating functions [2,3]. We first define

(6) Anlx) = Y anpx”
k=0
Notice that A (x/ is a polynomial of degree n sincea,, , = 0 for r > n. Using (2) we deduce that forn > 3,
{7 Aplx) = xAp-1(x)+ Ap-2lx/),
while (6) and the houndary conditions on a, , give
Aglx) = a,, = 1
Ailx) = a, , +al X = 2+x
Aylx) = a,o+a, x+a, ,x* = 2+2x+ x> -
Set

Alyx) = Z Aplxly”
n=0
Then the above initial values together with (7) yield

- (7 _(1+y)
(8) Afy,x) e

We now derive an explicit representation of A, (x) To begm, expand 1/(1 — xy — y?) in a formal power series:

©) T—xy—y* xy y? Zy(xf-y}t Z Z( )Xtrr_z E( )Xt_r o

t=0 r=0 t=0 r=0
Fix any integer n = 0. Then the coefficient of y” in (9) is easily seen ta be

(10) Batx) = (5 ) x"+ ("7 ) %" n[;/g}/é’] ) xn2ins2l
It follows that A, (x), the coefficient of y” in Afy,x), is given by
In/2] [(n-1)/2]
(11) Aplx) = 2 (n-s—S)Xn—23+2 }’: (n—sl—s)xn-j-gs
s=0 5=0
[n/2]-1
+ FZO (H—SZ—S)Xn-Z—Zs

Bp(x)+2Bn_1(x) +Bn_o(x) .

We now determine a,, , which, we recall is the coefficient of x” in A, (x). We have two cases.
CASE 1. Assume r =n (mod 2). Then we can find s = 0 so that n — r = 25, i.e., s = %fn — r). Notice that 8, 7(x)
does not contain the term x”. If s = 0, then r =n and

wn = (5) =15
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otherwise we can rewrite r asr = (n — 2) — 2(s — 1) and thus both B, (x) and B,,_2(x) contain a term in x”: hence

_ g n—%Nh-—r (n—2)— [%(n—r)— 1]
(12) an,r = %(n—r) ) +( ! Vz{n-—r)n— 7r )

Simplifying (12) we have that for r =n (mod 2),
_ f %n+r) Y%(n+r)—1
(13) anr= Catnon)* Cemin=1)-
CASE 2. Assume r #n (mod 2). Then the term x” appears only in B,,—7 (x/, so we obtain (in a fashion analogous to
the one above) that

o n—1—Yn—r—1)
anr=2(" 750500

That is, for r # n (mod 2),

. _ Y(n +r-1)%
(14) an,r = 2 %n-r-1) 0 °

We summarize these results in the following:
Proposition 2. Let ap,r be the number of alternating r-subsets of { 1,2, -,n } :
(i) Ifr=n (mod 2),

_ f %(n+r) %ln+r)—1
an,r = (%-(n-r))+ (Vz(n-.r}—I

(i) 1fr#n (mod2), )
= Yln+r—1)
anr = 2 (%(n—-r— 107"
Asa result of this development we obtain an interesting relation between the numbers a, ,and the: Fibonacci num-
bers [3]:

Corollary. Let 7,, be the Fibonacci sequence, i.e., f, =f, = 7 and fp+7 = f, + fp-7. Then we have

n
(1) fas2 = D an,r.
r=0
Proof. Recall (see [3], p. 89) that the ordinary generating function for the sequence , is
(16) Fiy) = 3 fay" = -—L—
=0 -y-y

It follows from (8) that

Aly,1) = (1+y)2Fly) = D (fg+ 260 g +F2ly"

n=0

where ., = £, = 0. But from (7),

Aly,1) = Y Anllly" .

n=0

and

n
An(l} = Z an,r .
r=0



328 ON ALTERNATING SUBSETS OF INTEGERS DEC. 1975

whence we conclude that

n
(17 Z anr = fn+2fnq+fp2.
r=0
Using the recurrence

fnt1 = fo +fp-1.
the right-hand side of (17) simplifies to 7,+2, which is the desired result, g.e.d.
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TABLE 1
Jacohi Symbols: = 7

a (a/b) (b/a) (a/=b) (—b/a)

=7 1 - 1

51 1 -1 -1

31 1 -1 1

gL e B
1 1 1 1 1
3 1 1 -1
5 1 1 1 1
7 1 1 -1

TABLE 2

Jacobi Symbols: =3
a (a/b)  (b/a) (a/~b) (—b/a)

-1 -1 -1 1 -1
-5 1 -1 -1 1
-3 0 0 0 0
-1 -1 1 1 -1
1 1 1 1 1
3 0 0 0 0
5 -1 -1 -1 -1
7 1 -1 1 1

[Continued on P. 330.]



