Equations (5) can be implemented by appropriate circuitry, as for (4), where R and S represent the reset and set inputs of an R-S flip-flop [8, p. 83] and C_{j} could be interpreted as a timing signal which signifies completion of changes (if any) in stage j. As before, a similar rule for the maximal form can be developed.
"When thou art weary, on the mountains stay,
And when exhausted, drink the rivers' driven spray." [1]

REFERENCES

1. Kalidasa, "The Cloud Messenger," Shakuntala and Other Writings, E. P. Dutton and Co., New York, 1959, p. 187.
2. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton Mifflin Co., Boston, 1969.
3. J. L. Brown, Jr., "Note on Complete Sequences of Integers," Amer. Math. Monthly, Vol. 68, No. 6 (June-July, 1961), pp. 557-560.
4. D. E. Daykin, "Representation of Natural Numbers as Sums of Generalized Fibonacci Numbers," Journal of the London Math. Society, Vol. 35 (1960), pp. 143-160.
5. J. L. Brown, Jr., "Zeckendorf's Theorem and Some Applications," The Fibonacci Quarterly, Vol. 2, No. 3 (Oct. 1964), pp. 163-168.
6. J. L. Brown, Jr., "A New Characteristic of the Fibonacci Numbers," The Fibonacci Quarterly, Vol. 3, No. 1 (Feb. 1965), pp. 1-8.
7. J. Galambos, "A Constructive Uniqueness Theorem on Representing Integers," The Fibonacci Quarterly, Vol. 10, No. 6 (Dec. 1972), pp. 569-598.
8. T. Kohonen, Digital Circuits and Devices," Prentice-Hall, Inc., Englewood Cliffs, 1972.

LETTER TO THE EDITOR

Dear Dr. Hoggatt:
I showed Dr. James W. Follin, Jr., of the Applied Physics Laboratory the example in D. Shanks, "Incredible Identities," The Fibonacci Quarterly, Vol. 12, No. 3 (Oct. 1974), pp. 271, 180. I think his generalization would be of interest.
Set $K^{2}=m+n$. Then one has the identity

$$
\sqrt{m}+\sqrt{2(K+\sqrt{m)}}=\sqrt{K+\sqrt{n}+\sqrt{K+m-\sqrt{n}+2 \sqrt{m(K-\sqrt{n})}}, ., ~}
$$

which can be checked by squaring twice, while performing all simplifications, including substitution and observing a perfect square.

