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A number of computer programs for evaluating determinants of large order are available, however, these programs 
are quite cumbersome if the determinants are non-symmetric and their order is large. It is rather difficult to test out 
these computer programs on account of the presence of round-off errors. In many situations, where a researcher is 
more interested in error assessment, the problem becomes exasperating. 

To ease this problem Bowman and Shenton [1] have recently quoted a non-symmetric determinant of order (s+ 1), 
given by Painvin [2 ] , which is factorable and have used an ingenious method to show that two other determinants 
can be reduced to the sth power of a number n, which occurs in the determinant. Since there is only one number/7, 
in each of the determinants, which can be changed arbitrarily the use of these results becomes highly restricted. 

We quote below more general forms, containing two arbitrary numbers n and s, of these two factorable determin-
ants. Their proofs are not being given as they are exactly similar to the one given by Bowman and Shenton. 
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It may be noted that there is no "a" in the last column. Each value of a, positive or negative or zero, gives a differ-
ent determinant, however, the value of the determinant remains unaltered by a and is equal to ns. 

*This work was done by the author while he was spending part of his sabbatical leave at the Computer Center, 
University of Georgia, Athens, U.S.A., whose help is gratefully acknowledged. 
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The value of the above factorable determinant depends upon the value of a. When n is replaced by n + 2 and a = 1, 
the above result becomes identical with Bowman and Shenton's result 

We also give here a more general form of Painvin's factorable determinant. For all values of n and a, taking either 
the upper sign or the lower sign at all places, the value of the determinant is (n + as/2f+1. 
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Evidently, when a = -1, and we take the lower sign, the above reduces to Painvin's result 

Proof. Letr denote the number of the row. If the respective rows are multiplied by 1-1) , r* 1,2, —, s+1 

and added into the first row, then (n + as/2) comes out as a common factor leaving 1 , - 1 , •••, (-1)s~ as the ele-
ments. The order of the determinant can be now reduced by unity by multiplying the new first row by t+las/2) and 
subtracting it from the second row. 

In the second operation the respective TOWS are multiplied by (-1)r~1 ( rA , r= 1, 2, —, s and added to the first 
row to give another (n + as/2) as a common factor. The order of the determinant can again be reduced by unity i*y 
multiplying the new first row by +a(s - 1)/2 and subtracting it from the second row. 

In the third operation the respective rows are multiplied by (-1)r~1 ( r +
2

 1 ) , r= 1, 2, —, s - 1 and added to-
gether to give another factor (n + as)/2) and then reduction of the order follows the above procedure. 

Repeating these operations (s - 4) times more, one can easily find that the given determinant reduces to 
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which gives our result. 
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NOTE: The author offers a reward of $25 for non-trivial generalizations of the three results in (1), (2) and (3). 


