Since we wish $y / x>0$, then $a=\left(k+\sqrt{k^{2}+4}\right) / 2$ is selected. In reality, this leads naturally to the Fibonacci polynomials. Suppose again we start out with $f_{0}=p$ and $f_{1}=1, f_{2}=p-k_{\text {p }}$

$$
\begin{gathered}
f_{3}=1-k(p-k)=k^{2}-k p+1=\left(k^{2}+1\right)-p k \\
f_{4}=(p-k)-k\left(k^{2}-k p+1\right)=\left(-k^{3}-2 k\right)+p\left(k^{2}+1\right)=-u_{4}(k)+p u_{3}(k) \\
f_{n}=(-1)^{n}\left[u_{n+1}(k)-p u_{n}(k)\right],
\end{gathered}
$$

where $u_{n}(k)$ is the $n^{\text {th }}$ Fibonacci polynomial. Once again $\lim _{n \rightarrow \infty} f_{n}$ does not exist unless

$$
p=\left(k+\sqrt{k^{2}+4}\right) / 2 ;
$$

then

$$
\begin{gathered}
f_{n}=(-1)^{n} u_{n}(k)\left(\frac{u_{n+1}(k)}{u_{n}(k)}-p\right) . \\
\lim _{n \rightarrow \infty} f_{n}=0
\end{gathered}
$$

as before. When $k=1$ un $\left.(1)=F_{n}\right)$ so that unless $p=a_{r}$ then

$$
f_{n}=(-1)^{n}\left[u_{n+1}(k)-a u_{n}(k)-(p-a) u_{n}(k)\right]=(-1) \cdot 1+(-1)^{n}(a-p) u_{n}(k)
$$

which diverges since $\lim _{n \rightarrow \infty} u_{n}(k) \rightarrow \infty$ for each $k>0$.

REFERENCES

1. Herb Holden, "Fibonacci Tiling," The Fibonacci Quarterly, Vol. 13, No. 1 (February 1975), pp. 45-49.
2. V. E. Hoggatt, Jr., and Krishnaswami Alladi, "Generalized Fibonacci Tiling," The Fibonacci Quarterly, Vol. 13, No. 2 (April 1975), pp. 137-144.

*

[Continued from Page 143.]

REFERENCES

1. L. E. Dickson, History of the Theory of Numbers, Vol. 1, Carnegie Institution of Washington, Publication No. 256, 1919. Reprinted by Chelsea Publishing Co., New York, 1952.
2. H. W. Gould, "A General Tura"n Expression for the Zeta Function," Canadian Math. Bull., 6 (1963), pp. 359366. MR 28 (1964), No. 2099.
3. H. W. Gould, "The Functional Operator $T f(x)=f(x+a) f(x+b)-f(x) f(x+a+b), "$ Math..Magazine, 37 (1964), pp. 38-46.
4. A. Tagiuri, "Sulla distribuzione dei termine congrui in alcune successioni di numeri interi positivi," Periodicó di Matematica, (2) 4 (1901), pp. 77-88, 119-127.
5. Frank J. D. Trumper, "Some General Fibonacci Shift Formulae," The Fibonacci Quarterly, Vol. 11, No. 5 (Dec. 1973), pp. 523-524. MR 48 (1974), No. 5987.
6. Problem E 1396, Amer. Math. Monthly, 67 (1960), pp. 81-82; Solution, p. 694.

> H. W. Gould
> Department of Mathematics, West Virginia University Morgantown, W. Va. 26506

