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1. iWTRODUCTiOM 
The use of linear algebra in combinatorial number theory was introduced in [4], The present paper extends the 

notations and studies the general properties of product functions, i.e., combinatorial number systems in 0n. Among 
the examples given are /7-dimensional Bernoulli and Euler numbers which are useful in the expansion in series of func-
tions in n variables. The methods and notations introduced here will be used in the study of functions and series in 
$n that will be the subject of future investigations. 

2. iOTATiOW 
Let / be the set of positive integers, J the set of non-negative integers, and given n e /, let I(n) c //and J(n) c J be 

such that if k e J(n), then k < n. 
In order to avoid confusion we shall write Id for the identity operator or the identity matrix. 
For n e /, k e i(n), X = [xu x2, —, xn] is an /7-dimensional vector andx^ are complex numbers, i.e.,x^e 0, so 

that X eg"7. 
Let 

P = lPl,P2,'"tPnL ® = hl,Q2* ~iQn], 
then W(n) c 0n be such that for P e W(n), m e l(n), pm e J, and for P ^ e W(n), P<Q, iff for all m e Kn), pm < 
Qm> 

We consider the following special vectors: 
(2.1) U e W(n), such that um = 1 for all m e Kn), 
(2.2) U(s)<aW(n), such that um = 8s

m, for all m <E Kn), 

where 5 ^ is the Kronecker delta. It follows that 
n 

U = H u<s)-
sr1 

(2.3) Z(s) e W(n), such that Z(s) = U - U(s), 

(2.4) Z(X,s) e «'", such that zm = xm(1 - ds
m), i.e., 

We next introduce for X e ^ n 

/? 

<2-5> l X l = X x™ > 

so that j ^ | = /?, \U(s)\=1, \Z(s)\ = n-1, and \Z(X,s)\= \X\-xs. 
We finally introduce the inner product in the usual way: If X,Y e 0n, then 

/? 

(2.6) *K = Y, x^Vm , 
m=1 

i-e., zm = 1 -bs
m . 

z5 = ft thus Z(U,s) = Z M . 

101 
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where y m is the complex conjugate of ym. It follows that 
n % 

(2.7) \X\ = (X-X)V* = ( £ M 2 ) 

If, however, X, K e Hn c # " , where /f7 is the space of real n vectors, then 
n 

(2.8) X-Y = Y, x™v™> 

and 
n % 

(2.9) IWI-^-[E4] 
3. FUNCTIONS OVER 0n 

We consider functions <£; 0n -» I f . 
A monomial in >Y can be written: 

(3.D * * - n x -̂x*^2•••**'', 
whereX^0n

 f K^W(n). In particular, 

(3.2) Xu = II xm = xix2'Xn . 

A polynomial in X, i.e., a polynomial in n variables, can be written 
P 

(3.3) f(X,P) = Ys a(K>XK> 
K=0 

where the summation is extended over all K such that K < P, K,P e W(n) and a(K) are numbers. In the generally 
adopted polynomial sense the degree of f(X,P) is clearly/? = \P\. 

More generally if <pk(xkl k e///?j, is a semipnne nf functions, ip/<: 0-+ 0, then with 

(3.4) < !> " - fi <pk(xk) = <p(X), 
k=1 

is called a product function of the functions </?£. 
We study the following examples: 
(i) \t<Pk = mt<,M= [mi, m2,~°, mnJ

 e J^fW, then with Ar e / /W 
A7 

(3.5) $u = MI = n 0?*/ , 

(ii) UM(=0n but.M&W(n), then we replace factorials by gamma functions thus \iipk = r(m/( + 1), then 

(3.6) q>u = T(M + U) = n T{mk+1). 
k=1 

(Hi) For / l / , / ^ G W(n), M < N, and k e /fW, we have for 
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(3.7) <$>u = n ("k) = n nk!/mk!(nk-mk)! = N!/M!(N-M)!= (M) • 
A:=7 V^A: I k=1 V ; 

It should be noted that ( ^ J is product function for binomial coefficients and not a multinomial coefficient. 
The corresponding multinomial coefficient would be (cf. [3]) 

[[M.W-M]) -[Znk]l/MI(N-M)t. 

where 
[M, N-M] = [m1f ni2, - , mnfn1-m1fn2-m2, - , nn -mmJ @ W(2n) 

and clearly \M\ + \N-M\ = \N\ . 
(iv) For N,M e WW, and A,B e 0 " 

and by regrouping the terms we obtain 
A/ 

(3.8) <A+B)N - Y, [M)AMBN-M. 
M=0 

(v) For X e #n
f and with e(/ = /e, e, —, ©7,, we define 

(eU)x = 6
| X | = fl eXk = n r £ x^/mki] = £ *MM' -

k=1 k=1 L J 
(3.9) e X = 

"mk=0 *" M=0 
and 

e~X= E (-DMXM/M! , 
M=0 

whereM; M = f - / ; | M l . 
It will be noted that whenever a summation goes to infinity the upper limit is left out. 

4. UMBRAL CALCULUS 
Umbral calculus consists in substituting indices for exponents. In [2] the following notation is used for the one 

dimensional case. 

(4.1) eax = X *kak/k!-+[expax,ak = ak] = £ xkak/k! 
1^0 k=0 

n n 
(4-2) (a + b,n = E ( k ) h"~k-»[(* +b)n,ak = ak. b

k = bk] = £ ( J) «**„.* . 

We shall change this notation and extend it to the /7-dimensional case. The umbral expression corresponding to a 
vector exponent is clearly 

(4.3) AK = n ak™ - A(K) = YL am(km), 
m=1 m=/ 
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where 
We r 

thus 

(4.4) 

instead of indices we write variables. 
low introd 

and with N,K e 

(4.5) 

but 

(4.6) 

and in 

(4.7) 

particular 

uce the following 

(a + b)' 

W(n) 

(A + B)N = 

(A+B)N 

convention: ' 

n 
7-E m=0 

n 
- n i 

m=1 

N 

= E 
K=0 

(U + B)N = 

c; 
'aiml 

(N 

N 

y. 

Whenever an 

| akbn-k
 = 

) + h(m)]nm 

) AKB(N-

(") BIN-

element is to be written urn 

J:{n
m)e(kMn-k) 

m^O 

N 

• E J 
K=0 

N / 

« - E ; K=0 

N 
-K>= T ( 

A(K)B(N-

\ 

brally it will be underlined, 

-K). 

\)AN-KB(K), 

\ 
t)B(K). 

K=0 K=0 

Similarly for the generalized exponential we have 

(4.8) e^ = *Y*XKAM/Kl • 
K=0 

St should be noted that the lastumbral expression (4.8) is the exponential kind generating function for the numbers 
MKl 

It should be noted that 

eAXeBX = T ^ XSA(S)/S/1 [ " £ XTB(T)/Tl'\ = £ Y*XS+TA(S}B(T)/S!T!. 
S=0 *-T=0 "* S=0 T=0 

Let S +T=K; observing that (*\ = K!/S!(K-S)!, we have 

eAXeBX m J- J^ XKA(SW(K-S)/S!(K-S)f = £ (XK/K!) 12 (*) A(S)B(K- S) , 
K=0 S=0 K=0 S=0 

but according to (4.5) the last sum is equal to (A + B) , where the binomial coefficients forS > /Tare all equal to 
zero. It follows that 

(4.9) * * * * * * - ] T XK(A+g)K/Kt = e(*+B)X , 

i.e., the symbolic exponential follows the same law of addition as the ordinary exponential. 
5. GENERATING FUNCTIONS 

Let 
HM = fipfk, 11 ip(k,2), - , *(Kn)] 

and using the notation of Section 2, we consider the product function 

(5.1) <p(ki = [<5>(k)]u = n <p(k,m). 
m=1 
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Let y(t,m) be the generating function for the functions $(k,m), i.e., 

(5.2) G<p(k,mJ = 2 2 ^Km)tk = v(t,m), 
k=0 

where m e l(n). 
By taking the product 

(5.3) f l [ V *(Km)tkm 1 - 5 v(m,tm) = [V(T)]U = n{T), 
m=1 L k==Q J m=1 

where 7"= /Y;, t2, - , tn] <E 0, and 

V(T) = M1M v(2,t2), - , v(n,tn)J = 0n 

we thus obtain the generating function of the product function, 
If if(k,m) = $(k,xm), then v(m,tm) = v(xm, tm) and (5.3) becomes 

(5.4) n v(xm,tm) = [V(X,T)]U = Sl(XJ). 
m=1 

We can state this result as follows: 

PROPOSITION 1. The generating function of the product function of a set of functions is equal to the product 
of the generating functions of the set of functions. 

6. INVERSION OF SERIES 

Consider the series 

(6.1) A(N) = 2 2 fW,K)B(K) , 
K=0 

where the coefficients f(N,K) are known. We say that (6.1) has an inverse if there exists a set of coefficients g(N,K) 
such that 

(6.2) B(N) = 2 2 g(N,K)A(K), 
K=0 

both series being convergent 
PROPOSITION 2. If both series (6.1) and (6.2) are absolutely convergent they are inverses of each other if and 

only if fand g are quasi-orthogonal in the sense of [4] and [5 ] . 
PROOF: 

A(N) = 2 ] M,K)B(K) = 22 m'K) 12 9(KS)A(S) = £ L M,K)g(K,S)A(S). 
K=0 K=0 S=0 K=0 S=0 

Since the series are absolutely convergent, their order can be deranged and the order of summation can be changed, 
thus 

AfN) = 12 A(SI [ 52 f<N,K)ff{KS)~\ = Yl A<S®N> 
S=0 "' K=0 " S=0 

where 5jy is the Kronecker-Delta. It follows that 

22 f(NfK)g(K,S) = hs
N 

K=0 
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which expresses quasi-orthogonality in the sense of [4] and [5] . 
PROPOSITION 3. A(N)=(C_ + B)N and B(N)=(G + A)N will be inverses of each other if f £ * G ; r = S J \ 
PROOF. Since 

N N 

A(N) = (C_ + B)N = ]T ( J ) C(K)B(N-K) = J^ ( j ) B(K)C(N- K) , 

B(N) = (G + A)N = £ (^) G(K)A(N-K) = £ f*\ A(K)G(N - K) , 

where both series involved are finite, i.e., present no problem of convergence, we apply the results of Proposition 2 
N N 

J2 (%} C(N-K) 1*\G{K-S)= Y, W/K!(N-K)!][K!/S!(K-S)!]C(N-K)G(K-S) 

" ( ? ) E (N
NZS

K)C(N-K)G(K-S)^S
N. 

at 
/ A / - S \ / N-S \_(N-S\ 
\N-Kj \N-S-N + KI"~\ M J ' 

/ condition can thus be written 

( ? ) X) (NMS) G(M)C(N-S-M)=(N
S)(G + CJN-S = S°N_S, 

N 

Let K-S = M,\.Q.,N- K = N- S-M, so that 

The preceding quasi-orthogonality condition can thus be written 
N 

M=o 

or taking/!/ -S= T, 

(6.3) (G + CJr = 5J . 

It will be observed that (6.3) can be written for an arbitrary vectorX in either form 

(6.4) a*®*® = /, 
or 
(6.5) eX$ = 7/eX£ . 

7. OPERATORS IN 0n 

Let Dim) = d/dxm, m e l(n), and D = [D(D, 0(2), - , D(n)J. We consider the product operator 

n 

a 
and more generally K= [kf, k2, •••, kn] <E W(n) 

(7.1) 0 = Du = n Dim) 

n (7.2) DK = n [D(m>] 
m=1 

kn 

Using this notation the/7-dimensional Laplace operator can be written 

(7.3) A2 = £ 32/3^ = £ > 
A?7= 7 m= 1 

It is easily seen that for k <E l(n) 

n 
2U(m) 
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(7.4) Clk) = Z(X,k) + CkU(k), c(k) = [C(k)]u , 

c(k) is such that 0c(k) = 0. Considering now the vector 
(7.5) C= [c(1)fc(2),...,c(n)] 

it follows that 0C = Q, and, if r\(X) is a function such that r\(0) = 0, then r}(C) is the most general expression such 
that 
(7.6) 0n = 0, 
where ri = ri(C). 

Similarly for difference operators we define Elm) such that Elm)]f(xk) = f(xk + 1)8^ , and 
(7.7) E = [EH), E(2), »•, E(n)J 

(7.8) £ = Eu = fi Elm) . 
m=1 

We clearly haveElm)y(X) = <p[X+U{m)], and 
(7.9) BX = EUX = X+ U, fy(X) = vlX+U). 

The operator 5 = £ - Id is not a product operator of the form 

I I [Elm)-Id], 
m=1 

We have however 
(7.10) 3X = U, 8<p(X) = $(X+ U)-y(X) . 

The operator A (m) = Elm) - Id leads clearly to the 
(7.11) A = tLtmi),L(m2).".Mmn)l 

(7.12) A = Au - n A(mk). 

It follows that AX = U, but the general expression of AX is rather complicated. 
The operator M(m) = [Elm) + Id]/2 leads similarly to 

(7.13) M = [M(m7), Mlm2h - , M(mn)J 
and 

(7.14) M = Mu = n M(mk). 
k=1 

A more systematic study of the operators introduced here as well as the corresponding functional equations will 
be published in the future. We introduce here only what we need in view of the applications given. 

8. RECURRENCE RELATIONS AND FUNCTIONAL EQUATIONS 
Let m G l(n), and aim) be a one dimensional sequence of numbers satisfying a recurrence relation of the form 

p 

(8.1) £ MP'MM™) = °< P <^J • 
m=0 

letk <E I(n), mk e J, M = [m<i,m2> ~'*mnL and 
AIM) = [aim i), aim2), -, a(mnJ] 

and the associated product function be 

(8.2) a(M) = [A(M)]U = I I a(mk) . 
k=1 
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By writing the product for (8.1) we obtain 
p 

n [ V b(p,mk)a(mk) 1 = 0 . 
= 7 L JTZn J 

* - "mk=0 

Regrouping the terms we obtain 

PU 

(8.3) ] T b(p,M)a(M) = 0, 

where B(p,M) = [h(p,m 1)/ h(p,m2>, - , b(p,mn)], and 

b(p,MJ = [B(p,M)]u - n b(p,mk). 
k't 

Clearly pU = [p, p, —, p]. We can state this result as follows. 
PROPOSITION 4. If a sequence of numbers aim) satisfies a recurrence relation of the form (8.1) then the product 

function of the numbers aim), i.e., a(M) satisfies a recurrence relation of the form (8.3). 
If OJ (m) is an operator such that 

(8.4) oo(m)f(xk) = <p(xk)8*, , 

where 8m is the Kronecker delta. 
Let X e 0, 

FIX) = tflUih f(Zx2l »•, f(n,xn)] e tn. &(X) = l*(Uih <p(Zx2), - , *(n,xx)] e= 0n , 

£1 = [OJ(D, CJ(2), -.., oo(n)J and f(X) = [$(X)]U, y(X) = [$(X)]U, OJ = &1U, 
then 
(8.4) cof(X) = ip(X). 

9. EXAMPLES 

(i) Consider the numbers am = a(m) defined in [1] p. 231. They satisfy the relation 

n-1 

(9.1) £ a(m)(n-m)! = 0. 

m=0 

These numbers are the coefficients of the Bernoulli polynomials 

n 

(9.2) <pnM = v(n,x) = £ a(m)xn-m/(n-m)! . 

m=0 
The numbers 

(9.3) Bm = B(m) = m!a(m) 

are called Bernoulli numbers and satisfy the relation 

(9.4) (1 + B)n -B(n) = 0. 

By using the Bernoulli numbers the polynomials of (9.2) can be written 

(9.2a) v(n,x) = (x + B)n/n! . 

We introduceM = [mi, m2, - , mn] <E W(n) and AIM) = [a(m j), a(m2), —, a(mn)], 

(9.5) a(m) = [A(M)]U = n a(mk), 
k=1 
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as well as 

B(M) = [B(mt), B(m2), - , B(mn)J, 

(9.6) B(n,M) = [B(M)]U = U B(mk). 
k=1 

The numbers B(n,M) are called the /7-dimensionai Bernoulli numbers. According to Section 8 we clearly have 
P 

(9.7) Y* a(M)/(P-M)!-a(P) = 0 

M=0 
and 

(9.8) [U + B_(n)]p-B(n,P) = 0. 

(9.7) and (9.8) are the recurrence relations for the a(M) and the /7-dimensional Bernoulli numbers. 
Consider next 

P = [PhP2, '~,Pnl e W(n), <&(P) = [ip(pi,x1),y(p2,x2), ~,v(Pn,Xn)] 
and 

n P P 

(9.9) <p(P,X) = n $(pk,xk)= T a(K)XP~K/(P-K)! = V B(n,K)Xp-K/K!(P- K)l= [X + B(n)]P , 
1 K=0 K=0 

from where it is easily seen that (cf. (7.1)) 

(9.10) 0i(P,X) = <p(P-U.X). 

On the other hand, according to [1 ] , p. 231, 

A(khp(pk,xk) = x^/tpk- 1)!, 

so that by multiplication over k we obtain 

(9.11) &v(P.X) = XP~U/(P- U)l . 

According to Section 5 and [1 ] , we obtain the generating function of the /7-dimensional Bernoulli numbers as 
follows: 

(9.12) « (T ) = TU/(eT- 1) = ] T B(n,M)TM . 

(ii) Consider the numbers e(m) defined by the recurrence relation (cf. [1 ] , p. 289) 
n 

(9.13) B(n) + ^ e(k)/(n-k)f = 0. 

k=0 

The numbers e(m) are the coefficients of the Euler polynomials 
n 

(9.14) r\(n,x) = J2 e(k)xn~k/(n-k)!. 

k=0 

The numbers t(n) = 2ne(n)n! are called the tangent coefficients (cf. [1 ] , p. 298) and the numbers 
n 

(9.15) e(n) = (l + t)n = £ CnA tlk) 

k=0 

Euler numbers. According to [1 ] , the tangent coefficients satisfy the recurrence relation 
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(9.16) (2 + tf + tln) = 0. 

It is shown in [1] that (9.15) can be inverted to give t(n)= [e- 1]n. It follows that 

(9.17) [e+l]n + [e-1]n = 0, n > 0. 

As before we introduce M e W(n) and r\(M) = [e(m 1), e(rr)2l - , e(mn)], with 

ri(n,Mf = fo(M)]u = 5 e(mk). 
m=1 

The /7-dimensional tangent coefficients will be T(M) = Mm f), t(m2>, •••, t(mn)], so that 

t(n,M) = [T(M)]U = 5 t(mk). 
k—1 

Finally let e(M) = [e(m 1), e(m2), - , e(mn)], so that n 

e(n,M) = [e(M)]M = I I e(mk), 
k=1 

where the numbers e(n,M) are called the /7-dimensional Euler numbers. It is easily seen, like in the case of the Ber-
noulli numbers, that 

(9.18) [e(n)+1]p+[e(n>- 1]p = 0, P > 0, 

(9.19) t(n,P) + [2U + T(n)]p = 0, P > 0, 

(9.20) t(n,K) = K!2Ke(n,K), 

(9.21) e(n,P) = [U+T(n)]p , 

(9.22) t(n,M) = [e(n)-U]M . 

We introduce in the same way the /7-dimensional Euler polynomials: Let 

HIP) = fo(p i,Xf), V(P2, *2>, - , Vfon, Xn)J , 

where/3 e W(n). It follows that 
n P 

(9.23) n(P,K) = I I r\(pk,xk) = J^ e(n,K)Xp'K/(P - K)l , 
k~1 K=0 

which defines the/7-dimensional Euler polynomials. 
It can easily be checked that similarly to the one-dimensional case we have 

(9.24) 0v(P,X) = r\(P-U,X) 
and 
(9.25) Mr\(P,X) = Xp/P! . 

According to Section 8 we obtain the following generating function for the Euler numbers e(n,K) and the numbers 
e(n.K) 

(9.26) Ge(n,P) = 2/[eT + e~T] = ] T etn,K)TK/'K! 

(9.27) Ge(n,P) = 2/[eT + 1] = £ efn.KJT* . 
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