SOME BINOMIAL SUMS

L. CARLITZ Duke University, Durham, North Carolina 27706

1. Put

$$A(n) = \sum_{k=0}^{n+1} (-1)^k \left\{ \begin{pmatrix} n \\ k \end{pmatrix} - \begin{pmatrix} n \\ k-1 \end{pmatrix} \right\}^3 ,$$

where it is understood that

$$\begin{pmatrix} n \\ -1 \end{pmatrix} = \begin{pmatrix} n \\ n+1 \end{pmatrix} = 0 \qquad (n \ge 0).$$

Consideration of this sum was suggested by the following problem proposed by H. W. Gould [1]. Let

$$A_p(n) = \sum_{0 \leq 2k \leq n} (-1)^k \left\{ \binom{n}{k} - \binom{n}{k-1} \right\}^p.$$

Then

$$A_2(2m+1) = (2m+1)A_1(2m+1).$$

It is noted that this result does not hold for even n.

Since

$$A(n) = \sum_{k=0}^{n+1} (-1)^{n-k+1} \left\{ \binom{n}{n-k+1} - \binom{n}{n-k} \right\}^3 = \sum_{k=0}^{n+1} (-1)^{n-k+1} \left\{ \binom{n}{k-1} - \binom{n}{k} \right\}^3.$$

so that

$$A(n) = (-1)^n A(n).$$

therefore

$$A(2m+1) = 0$$
.

However (1.2) gives no information about A(2m). By (1.1) we have

$$A(n) = \sum_{k=0}^{n} (-1)^k \binom{n}{k}^3 - 3 \sum_{k=0}^{n+1} (-1)^k \binom{n}{k}^2 \binom{n}{k-1} + 3 \sum_{k=0}^{n+1} (-1)^k \binom{n}{k} \binom{n}{k-1}^2$$

$$-\sum_{k=1}^{n+1} (-1)^k \binom{n}{k-1}^3 = 2 \sum_{k=0}^n (-1)^k \binom{n}{k}^3 - 3 \sum_{k=0}^{n+1} (-1)^k \binom{n}{k}^2 \binom{n}{k-1} + 3 \sum_{k=0}^{n+1} (-1)^k \binom{n}{k} \binom{n}{k-1}^2.$$

Supported in part by GP-37924

Thus if we put

$$S_{0}(n) = \sum_{k=0}^{n} (-1)^{k} \binom{n}{k}^{3}, \quad S_{1}(n) = \sum_{k=0}^{n+1} (-1)^{k} \binom{n}{k}^{2} \binom{n}{k-1},$$

$$S_{2}(n) = \sum_{k=0}^{n+1} (-1)^{k} \binom{n}{k} \binom{n}{k-1}^{2},$$

it is clear that

(1.4)

$$A(n) = 2S_0(n) - 3S_1(n) + 3S_2(n)$$
.

In the next place, we have

$$S_{2}(n) = \sum_{k=0}^{n+1} (-1)^{k} \binom{n}{k} \binom{n}{k-1}^{2} = \sum_{k=0}^{n+1} (-1)^{n-k+1} \binom{n}{n-k+1} \binom{n}{n-k}^{2}$$
$$= \sum_{k=0}^{n+1} (-1)^{n-k+1} \binom{n}{k-1} \binom{n}{k}^{2},$$

so that

(1.5)

$$S_2(n) = (-1)^{n+1} S_1(n)$$

and (1.4) becomes

(1.6)

$$A(n) = 2S_0(n) - 3\left\{1 + (-1)^n\right\}S_1(n).$$

In particular we have

(1.7)
$$\begin{cases} A(2m) = 2S_0(2m) - 6S_1(2m) \\ A(2m+1) = 2S_0(2m+1). \end{cases}$$

It is well known (see for example [2, p. 13], [3, p. 243]) that $S_0(2m + 1) = 0$, while

(1.8)
$$S_{o}(2m) = (-1)^{m} \frac{(3m)!}{(m!)^{3}}.$$

However $S_1(n)$ does not seem to be known.

2. In order to evaluate S_1 (2m) we proceed as follows. We have

$$S_{1}(n) = \sum_{k=0}^{n+1} (-1)^{k} {n \choose k}^{2} \left\{ {n+1 \choose k} - {n \choose k} \right\} = \sum_{k=0}^{n+1} (-1)^{k} {n \choose k}^{2} {n+1 \choose k} - S_{0}(n)$$

$$= \sum_{k=0}^{n+1} (-1)^{k} {n \choose k} {n+1 \choose k} \left\{ {n+1 \choose k} - {n \choose k-1} \right\} - S_{0}(n)$$

so that

(2.1) where

$$S_1(n) = T_0(n) - T_1(n) - S_0(n),$$

$$T_0(n) = \sum_{k=0}^n \left(-1\right)^k \binom{n}{k} \binom{n+1}{k}^2, \qquad T_1(n) = \sum_{k=0}^{n+1} \left(-1\right)^k \binom{n}{k} \binom{n+1}{k} \binom{n}{k-1},$$

Now

$$T_{1}(n) = \sum_{k=0}^{n+1} (-1)^{n-k+1} \binom{n}{n-k+1} \binom{n+1}{n-k+1} \binom{n}{n-k}$$
$$= (-1)^{n+1} \sum_{k=0}^{n+1} (-1)^{k} \binom{n}{k-1} \binom{n+1}{k} \binom{n}{k} ,$$

that is,

$$T_1(n) = (-1)^{n+1}T_1(n)$$
.

Therefore $T_1(2m) = 0$ and (2.1) yields

$$S_1(2m) = T_0(2m) - S_0(2m).$$

In the next place

$$\begin{split} T_{O}(n) &= \sum_{k=0}^{n} \; (-1)^{k} \binom{n}{k} \binom{n+1}{k}^{2} = \sum_{k=0}^{n} \; (-1)^{n-k} \binom{n}{n-k} \binom{n+1}{n-k}^{2} \\ &= (-1)^{n} \sum_{k=0}^{n} \; (-1)^{k} \binom{n}{k} \binom{n+1}{k+1}^{2} = (-1)^{n} \sum_{k=0}^{n} \; (-1)^{k} \binom{n}{k} \binom{n+1}{k+1} \left\{ \binom{n+2}{k+1} - \binom{n+1}{k} \right\} \\ &= -(-1)^{n} \sum_{k=0}^{n} \; (-1)^{k} \binom{n}{k} \binom{n+1}{k+1} \binom{n+1}{k} + (-1)^{n} \sum_{k=0}^{n} \; (-1)^{k} \binom{n}{k} \binom{n+2}{k+1} \left\{ \binom{n+2}{k+1} - \binom{n+1}{k+1} \right\} \\ &= -(-1)^{n} \sum_{k=0}^{n} \; (-1)^{k} \binom{n}{k} \binom{n+1}{k+1} \binom{n+1}{k} + (-1)^{n} \sum_{k=0}^{n} \; (-1)^{k} \binom{n}{k} \binom{n+2}{k+1}^{2} \\ &- (-1)^{n} \sum_{k=0}^{n} \; (-1)^{k} \binom{n}{k} \binom{n+1}{k+1} \left\{ \binom{n+1}{k} + \binom{n+1}{k+1} - (-1)^{n} \sum_{k=0}^{n} \; (-1)^{k} \binom{n}{k} \binom{n+2}{k+1}^{2} \\ &= -2(-1)^{n} \sum_{k=0}^{n} \; (-1)^{k} \binom{n}{k} \binom{n+1}{k} \binom{n+1}{k+1} - (-1)^{n} \sum_{k=0}^{n} \; (-1)^{k} \binom{n}{k} \binom{n+1}{k}^{2} \\ &+ (-1)^{n} \sum_{k=0}^{n} \; (-1)^{k} \binom{n}{k} \binom{n+2}{k+1}^{2} , \end{split}$$

so that

(2.4)
$$\left\{ 1 + (-1)^n \right\} T_0(n) = -2(-1)^n \sum_{k=0}^n (-1)^k \binom{n}{k} \binom{n+1}{k} \binom{n+1}{k+1}$$

$$+ (-1)^n \sum_{k=0}^n (-1)^k \binom{n}{k} \binom{n+2}{k+1}^2.$$

For n = 2m + 1, (2.4) gives no information about $T_0(2m + 1)$; indeed each sum on the right vanishes. For n = 2m, however, (2.4) becomes

(2.5)
$$2T_{0}(2m) = -2\sum_{k=0}^{2m} (-1)^{k} {2m \choose k} {2m+1 \choose k} {2m+1 \choose k+1} + \sum_{k=0}^{2m} (-1)^{k} {2m \choose k} {2m+2 \choose k+1}^{2}.$$

It is known [3, p. 243] that

(2.6)
$$\sum_{k=0}^{2m} (-1)^k \binom{2m}{k} \binom{2m+1}{k} \binom{2m+1}{k+1} = (-1)^m \frac{(3m+1)!}{m!m!(m+1)!}$$

and

(2.7)
$$\sum_{k=0}^{2m} (-1)^k {2m \choose k} {2m+2 \choose k+1}^2 = (-1)^m \frac{2(3m+2)!}{m!m!(m+1)!(2m+1)}.$$

Substituting from (2.6) and (2.7) in (2.5), we get

(2.8)
$$T_0(2m) = (-1)^m \frac{(3m+1)!}{(m!)^3(2m+1)}.$$

Therefore by (2.3) and (1.8)

(2.9)
$$S_1(2m) = (-1)^m \frac{(3m)!}{m!m!(m-1)!(2m+1)}$$

Finally, by (1.6) and (2.9),

(2.10)
$$A(2m) = -2(-1)^m \frac{(3m)!(m-1)}{(m!)^3(2m+1)}.$$

This completes the evaluation of the sum A(2m). Note that we have not evaluated S_1 (2m + 1).

3. For completeness we give a simple proof of (1.8), (2.6) and (2.7). We assume Saalschütz's theorem [2, p. 9]:

(3.1)
$$\sum_{k=0}^{n} \frac{(-n)_{k}(a)_{k}(b)_{k}}{k!(c)_{k}(d)_{k}} = \frac{(c-a)_{n}(c-b)_{n}}{(c)_{n}(c-a-b)_{n}} ,$$

where

$$(a)_k = a(a+1) \cdots (a+k-1), (a)_0 = 1$$

and

$$(3.2) c+d = -n+a+b+1.$$

We rewrite (3.1) in the following way:

(3.3)
$$\sum_{r=0}^{j} \frac{(-j)_r (a+j)_r (b+c-a+1)_r}{r!(b+1)_r (c+1)_r} = \frac{(a-b)_j (a-c)_j}{(b+1)_j (c+1)_j} \quad ;$$

the condition (3.2) is automatically satisfied. Multiplying both sides of (3.3) by $(a)_j x^j / j!$ and summing over j, it follows that

$$\sum_{j=0}^{\infty} \frac{(a)_j(a-b)_j(a-c)_j}{j!(b+1)_j(c+1)_j} \ x^j = \sum_{j=0}^{\infty} \frac{(a)_j}{j!} \ x^j \sum_{r=0}^{\infty} \frac{(-j)_r(a+j)_r(b+c-a+1)_r}{r!(b+1)_r(c+1)_r}$$

$$= \sum_{r=0}^{\infty} (-1)^r \frac{(a)_{2r}(b+c-a+1)_r}{r!(b+1)_r(c+1)_r} \ x^r \sum_{j=0}^{\infty} \frac{(a+2r)_j}{j!} \ x^j = \sum_{r=0}^{\infty} (-1)^r \frac{(a)_{2r}(b+c-a+1)_r}{r!(b+1)_r(c+1)_r} \ x^r (1-x)^{-a-2r} \ .$$

Now take a = -n and we get

(3.4)
$$\sum_{j=0}^{\infty} \frac{(-n)_j (-n-b)_j (-n-c)_j}{j! (b+1)_j (c+1)_j} x^j = \sum_{r=0}^{\infty} (-1)^r \frac{(-n)_{2r} (b+c+n-1)_r}{r! (b+1)_r (c+1)_r} x^r (1-x)^{n-2r} .$$

For n = 2m and x = 1, (3.4) reduces to

(3.5)
$$\sum_{i=0}^{\infty} \frac{(-2m)_{i}(-2m-b)_{i}(-2m-c)_{j}}{j!(b+1)_{j}(c+1)_{j}} = (-1)^{m} \frac{(2m)!(b+c+2m+1)_{m}}{m!(b+1)_{m}(c+1)_{m}}$$

Now let b,c be non-negative integers. Then (3.5) yields

(3.6)
$$\sum_{j=0}^{2m} (-1)^m {2m \choose j} {2m+b+c \choose j+b} {2m+b+c \choose j+c}$$
$$= (-1)^m \frac{(2m)!(3m+b+c)!(2m+b+c)!}{m!(m+b)(m+c)!(2m+b)!(2m+c)!}$$

For b = c = 0 we get (1.8); for b = 0, c = 1 we get (2.6); for b = c = 1 we get (2.7).

REFERENCES

- 1. E 2395, Amer. Math. Monthly, 80 (1973), p. 75; solution, 80 (1973), p. 1146.
- 2. W. N. Bailey, Generalized Hypergeometric Series, Cambridge, 1935.
- 3. L. J. Slater, Generalized Hypergeometric Functions, Cambridge, 1966.

ARARARA

[Continued from Page 214.]

$$\frac{1}{k} \log \frac{1+\sqrt{5}}{2}$$

as $n \to \infty$. Since this limiting value is an irrational number, the sequence (u_n) is u.d. mod 1.

REMARK. Let p and q be non-negative integers. Then the sequence

$$p, q, p+q, p+2q, 2p+3q, ...$$

or (H_n) , $n = 1, 2, \dots$ with

$$H_n = qF_{n-1} + pF_{n-2}$$
 $(n \ge 3)$, $H_1 = p$, $H_2 = q$

possesses the property shown in Theorem 1. For if $v_n = \log H_n^{1/k}$, we have

$$v_{n+1} - v_n \rightarrow \frac{1}{k} \log \frac{1 + \sqrt{5}}{2}$$

as $n \to \infty$.

Theorem 2. Let p, q, p * and q * be non-negative integers. Let (H_n) be the sequence

$$p, \ q, \ p+q, \ p+2q, \ 2p+3q, \ \cdots$$

and (H_n^*) the sequence

$$p^*$$
, q^* , $p^* + q^*$, $p^* + 2q^*$, $2p^* + 3q^*$,

[Continued on Page 276.]