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1. INTRODUCTION

A composition of the integer n into k parts is defined [1, p. 107] as the number of ordered sets of non-negative
integers (a7, a2, -, ax ) such that

(1.1) aj+ag+-tag = n
It is well known and easy to prove that the number of such compositions is equal to the binomial coefficient
n+k-—1

k—1

If we require that the a; be strictly positive then of course the number of solutions of (1.1) is equal to
n—1
k—1]°

In the present paper we consider the problem of determining the number of solutions of (1.1) when we require that

(1.2) ai # aj+1 (i=12-,k-1).

Let cfn, k) denote the number of solutions of (1.1) and (1.2) in positive a; and let ¢fn, k) denote the number of solu-
tions of (1.1) and (1.2) in non-negative a;. Then clearly

(1.3) clnk) = ¢(n—kk).
Also it is evident from the definition that
(1.4) clnk) =0 (k >2n+1).
We shall show that
(1.5) 22 ki = 1
nk=0 1+Z (— ”/' _&i{l_
j=1 I—XI
Forz = 1, this reduces to
(1.8) _’ Z: cln)x" = — ! ,
=0 143 (i 2L
=1 1-x/

where
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n
(1.7) cln) = 2 cln,k), cl0) = 1.
k=1
Thus ¢(n) is the number of solutions of (1.1) and (1.2) with a; > 0 when the number of parts is unrestricted.
It follows from (1.3) and (1.6) that

(1) T I R

k=1 -

& 1+ (-1 2 —

j=1 1—x!
This is also proved independently.
The generating function for
(1.9 ct)= Y.k, cl0)=1
k
is less immediate. It is proved that
(1.10 > ol = !
e 2j-1
0 1-(1-x) 9. X

7 (1=xZ1)1-x2)

It is of some interest to determine the radius of convergence of the series

(1.11) Z clnkx", z clnx" .
(4] 0

We show that the radius of convergence of the first is at least '; the radius of convergence of the second is also prob-
ably > % but this is not proved.

2. GENERATING FUNCTIONS FOR cfn, k) AND c,(n;k)

It is convenient to define the following refinements of ¢(n, k) and ¢ (n,k). Letc,(n,k) denote the number of solu-
tions of (1.1) and (1.2) in positive integers a; with a; = a; ¢,(n, k) is defined as the corresponding number when the a;
> 0. Clearly

n n
(2.1 clnk) = E caln,k), c(nk) = Z calnk).
a=1 a=0

The enumerant c,(n, k) satisfies the recurrence

(2.2) calnk) = 2 cpln—a k=1) (k> 1).
bia
If we put, fork> 1,

oo

Falk) = 3 caln k", Biloy) = 2 Faltkly®,

n=1 a=1

it follows from (2.2) that
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Falxk) = x2 32 Fplok—1) [k > 1).

b#a
Then
Qilxy) = Z (y)® Y Fplak—1) = Z Folxk—1) 3 lxy)? = z Folx,k—1) ( XZ— - (xy)? ),
a=1 b#a b=1 a#b b=1
so that
(2.3) Drlx,y) = 7—:’—%/— Dp-1(x,1) = Dp_q(x,xy) (k > 1).

Iterating (2.3), we get
Beloy) = 2 Beql 1) - 7_-)(7}'7 Dpool, 1)+ Bpalexy) (k> 2)
and generally

Pylxy) = L T ) Rty k> ).
j=1 1-xly

In particular, fors = k — 7, this becomes

k-1
24)  Bplxy) = D (~1)F7 _xly_ il 1)+ (-1 10 1 00x* ) (k> 7).
j=1 1-xly

Since

®ly) = Z by)® = 75

it is clear that (2.4) may be replaced by

k
(2.5) Dilxy) = ), (—1)F7 —V—Fk_,(x 0o (k> 1),
j=1 1-xly

where it is understood that
(2.6) Dolx,y) = 1.
Fory = 1, (2.5) reduces to

k .
i xd
2.7 ple, 1)+ (~1) X By il 1) = 44,
j=1 1—x!
where &, 7 is the Kronecker delta.
Using (2.6), this gives

oo k .
Z Pal { (IJk(x,7}+E (-1) Xj.
k=0 j=1 1—x/ J
and therefore

(2.8) 2 Bulx )k = — 1
=0 149, (—1) Xz
=1

1-x!
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In view of (2.1), (2.8) can be written in the more explicit form

co

(2.9) Z eln k)x"zK = !
n,k=0 7"‘2 (- 7)! z
We now put
1 Pk(X) k
(2.10) — — ; e Z
D DA . cc
j=1 1-x!
where
(i = (1=x)1=x2) (1= x¥), (x)o =
Clearly
2.11) Bil1) = ”,"j"’
The P (x) are palynomials in x that satisfy
k
(2.12) Pelx) = 3 (—z)f-’[” Wi-ixPijle) k> 1),

J=1
where

(5] e
i (x)j(x )k
The first few values of Py (x) are

Pylx) =1, Pilx) =x, P,lx) = 2x® P,lx) = x*+x°+4x° .
In the next place, by (2.5),

oo oo k

J
IR VLR DL P )/"——L— ®p-jlx, 1) = Z ()it xhve! Z Oy Ix. 1)z
k=1 k=1 j=1 1-xly =1 1-xly k=0

Hence, by (2.8),
¥ (- vl
J
(2.13) Z B fxy)z* = L - =xy
k=t 149 (-1) —’—(—/-z-{-
P 71 —x!

This evidently reduces to (2.8) when y = 1.
Note that the LHS of (2.13) is equal to

(2.14) z: Z cln,kix"y?zK
n=1 ak

3. GENERATING FUNCTION FOR cfn) AND RELATED FUNCTIONS

Forz =17, (2.8) reduces to
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oo

(3.1) 2 il 1) = —— T
k=0 Z it _xl

We have =1 1-x!

3 eyt xl Z (—1)F ik = E "S-

i=1 1-x! k=1 iln
Put
(3.2 d'ln) = 3 (-1)F1

il

thus d’fn) is the number of odd divisors of n less the number of even divisors.
Forn =2'm, where m is odd, and r > 0,

) =30 S 1P = (1o 3 1,

s=0 j|m jlm
so that
(3.3) d’ln) = —(r— 1)d(m),
where d(n) is the number of divisors of 7.
Thus we may replace (3.1) by
(3.4) Z Bplx, 1) = “—;L—
N 7, n
1- ZJ d’(n)x
Since 1

E Dplx,1) = 1+ Z caln k" = 7+Z cln)x”,

k=0 n,ka=1 n=1
we have therefore
(3.5) 1+3 el = ———1 =

- . j "
= D DAL e R Y
r j=1 1-x! n=1
It follows that c(n/ satisfies the recurrence
n
(3.6) cln) = Z d(jeln —j) n=>1),
j=1

where ¢(0) = 1.
Itis also of some interest to take z = —7 in (2.8). We get

2 (1K) = ——1 S

k=0 1+ Z xij 14 Z dln)x"
1

1 1-x
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Since
Z (~1)%Dy(x,7) = 1+ Z (—=1)Kcqln k)x" = 7+2 c*nx",
k=0 nk,a=1 n=1
where
n
(3.7) c*ln) = Z (-—cha(n,k),
k,a=1
we get
(3.8) : 1+ c*k" = -———;—7—-——-—
’ 143 dink"
1
This yields the recurrence
n
(3.9) c*(n)+2 djc*n—j) = 0 (n>1),
j=1

where c*(0) = 1.
The first few values of ¢ *(n) are

c¥(1) = =1, ¢*2)=—1, ¢c*3) =1 c¢*4) =0 «c*5) =1 ¢*6)=-2.
Itis also of interest to take y = —7in (2.13). Fory = —17, z= 7 we get

DAY xl

Z DPylx,—1) = ; X ,
- cd
k=t 1+ 3 (~1)) X

7 7—XI

so that

oo - . j
- 142 3 (-1)) X %

(3.10) 3 Oulx-1) = v~

k=0

1—x

j_x_

7+E (-1) 7
7 1—x

If we take y =z = —7 in (2.13) we get

X
3 1kl -1) = ——T
k=1 1+ Z ___X_j_
1—x!
so that ’
i
1423 X 1+2 5" dolnkx"
(3.11) 3 ~keg-1) = = :
k=0

oo .
1+Z x! _
7 1-x

1+, dink"
1 1
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where d,, (n) denates the number of odd divisors of n. Note that the LHS of (3.11) is equal to

(3.12) 143 X" 3 =107 Reyln k).
n=1 ak
4. GENERATING FUNCTION FOR Z (n,k) ANDZ ,(n,k)

While generating functions for ¢ (n, k) and ¢ ,(n, k) can be obtained from those for cfn, k) and c,(n, k) by using (1.3),
it is of some interest to derive them independently. Put

oo

Falok) = Y, calnklx",  Dplxy) = 3 Falekly® .
n=0 a=0
Then, exactly as in Section 2,

Calnk) = Y cpln—ak),

b#a
so that
Falnk) = x* 7 Folx, k- 1)
b#a
and
& . - a T ) = = _ I b
eley) = 3 bl 3 ol k=1) = 3 Fol k= 1) =L = )® ).
a=0 b#a b=0
Thus
@.1) Dbyl = 7—7xy D p(x,1) = Dy_(x, xy) k > 1).
As above, iteration yields
k-1 ,
— =1 — 4= _
Bty = S E B+ -0 B xRy > ).
j=1 1-xly
Since
®4lx,y) }:'_2 by)® = 5=
we get
k 1
.2 Buloy) = 3 EL G i ks 1),
1 1—=xy
where
@.3) Dplxy) = 1.
Fory = 7, (4.2) reduces to
k .
(4.4) <T>k(x, 7}+Z —(_——U—j E’k-j(X/ 1) =8kop.
j ’

j=1 1—x

It follows that
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.5) DR TR —
= i J
0 13 -1y 2L
=1 1-x!
Now put
7 _ i Pelx) «
= e z ,
o0 3 / k=0 (X)k
1y~
j=1 1—x!
so that —
= Prl(x)
4.6 (b 11 = L
The Py (x) are polynomials in x that satisfy the recurrence
& .
@.7) Petx) = 35 =0T [ K b Peyte)  tk > 1
=1 o
also it is clear from the definition that
(4.8) Prlx) = x*Py(x).
Forx = 1, (4.7) reduces to _ _
Pull) = kPr-q(1),
so that
(4.9) Pil1) = ki.

Also it is easy to show by induction that _
deg Pifx) < %jlj— 1),
Indeed, assuming that this holds forj < &, it follows that the degree of thejth term on the right of 4.7)
<jlk—=j)+5jGi— 1)+ %lk—jlitk—j— 1) = Bk(k—1).

Yk lk=1) i1y By (x). Then we have

K k=1
')’k"‘Z')’k—j"Z Vi (k > 1).
j=1

Let v, denote the coefficient of x

j=0
This gives
) bt .
2 k| 1-20 40 | =1,
k=0 j=1
so that
ko 1-x_
2 vex T—2x
k=0

Thus 7k =2k~ 7, k> 1 andso
{4.10) deg Prlx) = %klk—1).

Since, by (2.4),
cink) =0 (k >2n+1),

it follows that Fk(x) begins with a term in x[k/zj; moreover the coefficient of this term is 1 for k odd and 2 for &

even and positive.
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Itisclear from the recurrence (4.7) that all the coefficientsare integers. It would be interesting to know if they are
positive.

If we put
D - ) 1 n
Pe(x) zi ylkjx! and W ,,Z=o: plnkx",

so that p(n, k) is the number of partitions (in the usual sense) of n into parts < &, it follows from (4.6) that
@.11) clnk) =3~ pln —j, khy(kj).
J

Returning to (4.2), we have

D Bylylz* Z (~1)51 L By lx, 1)
k=1

7 xy
This gives
- 3t 2
4.12) E Oy lxylzk = /—790 1-xly
- N
= 1430 (-1} —Z—
j=1 -
We may rewrite (4.5) and (4.12) as
4.13) 1+ 3 clnkix K = ! ,
= j
ket 1+Z 1V
}: (1)1 -—-’—
(@.14) 7+Z Z Calnkix"ydzk = EL — 1-xly
n=1 ak Z 7)1 I
By (1.3) we have =1 1-x
(4.15) clnk) = cln+k k)
Hence, replacing z by xz in (4.5), we have
(4.16) 1+ 3 cln+k kix"™k = !
n k=1 7+E ( 7)/ XIZ
j=1 71— Xj

This is of course equivalent to (2.9).
Since _
caln,k) = cae1(n +k, k) (k > 0,

the equivalence of (4.16) and (2.9) follows easily.
Note that it follows from (4.6) and (4.12) that

(=1)FT Pyojlx)
4.17 D = 2: P L
4.17) «xy) L iy Wy
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In addition to (4.15) another relation expressing ¢ (n,k/ in terms of cfn,k/ can be obtained by considering the pos-
sible location of zero elements. There may be a zero on the extreme left or the extreme right; also there may be one
or more zeros on the inside. Thus we get relations such as the following.

cho) =c(a1) =1, clnd)=clnt) =1 =1
cfn2) = cln2)+2c(n,1) (n>2),

TMn,3) = cln3)+2c(n,2) +x(n, )+ D, el Naln,, 1),

n,*tn,=n

c{n4) = cln,4)+2c(n,3) +cln2)+2 Z cln,, Teln,, 1)+2 E cln,, 1eln,, 2).
n;n,=n n;*n,=n
it follows that

Z:‘T’kix,ﬁzk = J+z+(1+z)? E@k(x, 7)zk+(7+z)223 _,‘Pk(x,llzk §2+(1+z)3z (Z Dy fx, szg o
0 1 1 é 1 ;
(1+z)? Z & (x,1)25

= [+z+ !

1-2 E Dy x, 1)2%
1
It is easily verified that this is in agreement with (2.8) and (4.5).

5. GENERATING FUNCTIONS FOR ¢fn) AND ¢ (n)

We may not putz = 7in (4.5) since the right-hand side then becomes meaningless. We can get around this difficulty
in the following way.

To begin with, we shall get crude upper bounds for ¢fn/ and ¢ (n). Let v(n, k) denote the number of solutionsin pos-
jtive integers of

n=a +ta,t+-tag
and let v {n, k) denote the number of solutions in non-negative integers. Then
vink) = (071) . Tk = ("5
Clearly
clnk) < vin,k), cink) < vink).

1t follows that

{5.1) cln) < 27 n=1),
so that the radius of convergence of

oo

(5.2) Z clnlx”
g
is at least %.
As for ¢ (n), since
cink) =0 (k> 2n+1),

we get
2n+1 2n 2n
= ntk—1Y _ n+k 3n)
”(”)<Z(k~7) Z(k)<}:(k’
k=1 k=0 k=0

so that



264 RESTRICTED COMPOSITIONS

(5.3)
Tn) < 2%,
Hence the radius of convergence of
(5.4) Z clnk™
0

is at least 1/ 8;

0CT. 1976

Presumably these bounds are by no means best possible. It seems likely that the radius of convergence of (5.4) is

about %.
Next consider

1-x

2k . k R . o0 ,
E (_7}]‘1 ___Z_{__ _ E 12]"7 a Z2/ _ E 7"2"'/\’2/—7(2—)(} 221._1
i1 1-x! %1 %4 )T 1=xF - x3)

- X =1 T—x

Thus (4.5) becomes

(5.5) D @plx 1)25 = _ 1
0 . 1-z+x% "z —x)
T (1=xZ T )1-x%)

Itis now permissible to let z— 1. We.get

=

(5.6) > ol = !

0 = 2j~1
1—(1-x) - -
},: (1-xF1)1-x%)

Forx = % we get
1/2 1/8 1/32

(=500 (=501 " -2) (&)

Thus the radius of convergence of (5.4) is probably somewhat greater than %.
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