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1. INTRODUCTION 
A composition of the integer n into k parts is defined [1, p. 107] as the number of ordered sets of non-negative 

integers (ai, a2, -, s^) such that 
(1.1) a<i+a2 + ~' + ak * fl-
it is well known and easy to prove that the number of such compositions is equal to the binomial coefficient 

/ n + k - 1 \ 
[ k-1 ) • 

If we require that the a, be strictly positive then of course the number of solutions of (1.1) is equal to 

( " . : ! ) • 

In the present paper we consider the problem of determining the number of solutions of (1.1) when we require that 
(1.2) ait ai+1 (i = t,2,~,k-t). 

Let c(n,k) denote the number of solutions of (1.1) and (1.2) in positive a/ and let c~(n,k) denote the number of solu-
tions of (1.1) and (1.2) in non-negative a,-. Then clearly 
(1.3) c(n,k) = c~(n-k,k). 

Also it is evident from the definition that 
(1.4) 

We shall show that 

(1.5) 

Forz = 7, this reduces to 

(1.6) 

E 
n,k=0 

y 

c <n,k) = 

c(n,k)xn. 

" c(n)xn 

0 

zk = 

_ _ 

(k > 2n + 1). 

1 

1 + JT(-i)l-*!£ 

1 

/ - / ' - * ' 

nm0 t+22t-v'-*L 

where 
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(1.7) c(n) = Y l c(n>k)> c(0) = 1-
k=1 

Thus c(n) is the number of solutions of (1.1) and (1.2) with a; > 0 when the number of parts is unrestricted. 
it follows from (1.3) and (1.6) that 

(1.8) 7+ £ c(n,k)xnzk = — i . 

M 1-*' 
This is also proved independently. 

The generating function for 

(1.9) F(n) = J2 c(n,k), 1(0) = 1 
k 

is less immediate. It is proved that 
oo 

(1.10) £ c(n)xn = 
0 / , V x2i~1 

i-n-x)^ 
t (1-x2H)(1-x2j) 

It is of some interest to determine the radius of convergence of the series 
oo oo 

(LID J2 c(n)xtl< X ! *(n,xn • 
0 0 

We show that the radius of convergence of the first is at least V%\ the radius of convergence of the second is also prob-
ably > 1/2 but this is not proved. 

2. GEiyERATIPJG FUiCTlOWS FOR c(n,k) AS^D ca(n;k) 

It is convenient to define the following refinements Qic(n,k) and F(n,k). let ca(n,k) denote the number of solu-
tions of (1.1) and (1.2) in positive integers a,- with a, = a; Ia(n,k) is defined as the corresponding number when the a,-
> 0. Clearly 

n n 

(2.1) c(n,k) = Y! €a(nM c(n.k) = } £ ca(n,kl. 
a=1 a^O 

The enumerantcafr7,^ satisfies the recurrence 

(2.2) ca(n,k) = 2 ^ cb(n -a,k-1) (k > 1). 
h^a 

If we put, fork> 7, 
oo oo 

Fa(x,k) = £ ca(n,k)xn, <bk0c,y) = £ FafcUy* . 
n=1 a=1 

it follows from (2.2) that 
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Fa(x,k) = xa E Fb<x,k- V (k > V. 
bta 

Then 
OO OO OO 

*k(*,Y) * E (xy,a Tt Fb(*,k- If = E Fb(x,k- V E M a - E V * , * - V ( jzL- ~ Wb ) 
a=1 hta b=1 atb b=1 \ *Y I 

so that 
(2.3) *k(x,y) = j-&j ^k^(xf1)-^k^(xfxy) (k > 1). 

Iterating (2.3), we get 

®k(*,v) = jz^r *k-l(x,D- j ^ $k-2(x,D + ®k-2(x,x2Y) (k > 2) 
and generally 

s 

*k(*,y) = £ (~VH -JS^r- $H<X'1> + <-1>5®k-s<x,xsv) (k > s). 
j=1 1-x'y 

In particular, for$ = Ar - 7, this becomes 
k-1 

(2.4) <bk(x,y) = £ (-D'~1 -JU^- $k-j(x,1) + (-1)k-1<f>1(x,xk-1,y) <k> 1). 
1=1 1-x'y 

Since 

®r(x,y) = J2 (xy,a = r^--

it is clear that (2.4) may be replaced by 
a-1 

k 

(2.5) * * f r ^ = E (-1)H ^ Fk-l(x,D (k > 1), 
n i-xJy 

where it is understood that 
(2.6) 9o0c,y) = 1. 

F o r / = 7, (2.5) reduces to 
k 

(2.7) $ * fc / ; + E l-D1-^-, $k-j(x,D = Skm1 

where 5 ^ / is the Kronecker delta. 
Using (2.6), this gives 

k 
„j i 

= 1 
-* i •* ' *—* - / •* ' ' i 

and therefore 

f : zk f *k(x,D+J2 {-»•> si- *H(X,D} = 
k=0 ^ j=1 1-x' J 

(2.8) £ $>klx,1hk = 1 
k=° nJT (-1)1-*!iL 

M 1-x' 
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In view of (2.1), (2*8) can be written in the more explicit form 

(2.9) £ c(n,k)xnzk = 
".k=0 , . V / „./ x'z' 7 + V {-t)J JlllL 

M 1-*' 

Mk 

oo 

= (1-xHl 

1 

•D1 

-X 

\>,M 

x'z' 

1-x1 

2,...(J. 

k=0 

-Xk), 

,1) - PJM 

PkM k 
Mk ' 

Mo = / 

We now put 

(2.10) 

where 

Clearly 

(2.11) _ „ - w 

The Pk(x) are polynomials inx that satisfy 
k 

(2.12) Pk(x) = Ys ("1>H [ y 1 MHX'PHM (k > V, 
M 

where 

r k i = Mk 

L ' J M/M*-/ ' 
The first few values of P^ (x) are 

Pjx) = I Pjx) = x, Pjx) = 2x\ Pjx) = x4 +xs +4x6 . 

In the next place, by (2.5), 

E **fcj** - E ^ E t-v"-*!*- »wfc« -E M;" -^f E 
Hence, by (2.8), 

(2.13) £*kMfc*-*=* L^K. 
™ M | oo . 

* = ' - . V , -./ x'z' i+Y, (-»' 
This evidently reduces to (2.8) when y = 1. 

Note that the LHS of (2.13) is equal to 

M 1-*' 

(2.14) £ 2 ca(n,k)x"yazk . 
n-1 a,k 

3. GENERATING FUNCTION FOR c(n) AND RELATED FOWCTIOiyS 

Forz= 1, (2.8) reduces to 
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oo 

(3.1) £ *k(*,1) = - • 
; _£ h1)H ^!__ 

We have i=1 x 

j=1 1~x' j,k=1 n=1 j\n 
Put 

(3.2) d'(n)=Y,(-1)H ; 
A" 

thus d'(n) is the number of odd divisors of n less the number of even divisors. 
For/7 = 2rm, where m is odd, and r>0, 

s=0 j\m j\m 
so that 
(3.3) din) = -(r-Dd(m), 

where d(n) is the number of divisors of /?. 
Thus we may replace (3.1) by 

oo 

(3.4) J^$k(x,l) = z-1 " 
k=° 1-JbdW 

Since 1 

OO OO OO 

k=0 n,k,a=1 n=1 

we have therefore 
oo 

(3.5) 1+YJ c(n)x" = " = ~ • 

' /=/ I-*' n-1 

It follows that cfn) satisfies the recurrence 
n 

(3.6) cfn) = £ d'fjkfn-j) (n > 1), 

M 
where cfO) = I 

It is also of some interest to take z = - / in (2.8). We get 

]£ f-Vk^k(x.7) = 1 = L 
""" -^ ' OO o o 

1 1-X1 1 
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Since 
oo oo oo 

J2 (-Vk*k{x,1) = 1+ J2 {-1)kca(n,k)xn = 1 + J2 c*(n)xn , 

k=0 n,k,aFl n-1 
where 

n 

(3.7) c*(n) = Yl t-1)kca(n,k), 

k,a=1 
we get 

oo 

(3.8) 1+Y\ c*(n)xn = ' . 
; 1+1Ld(n)xn 

1 
This yields the recurrence 

n 

(3.9) c*(n) + Y^ d(j)c*(n-j) = 0 (n > 1), 

M 
where c*(0)= I 

The first few values oH*(n) are 

c*(1) = -1, c*{2) = - 7 , c*{3) = I c*{4) = 0, c*(5) = 1, c*(6) = -2. 

It is also of interest to take y =-1 in (2.13). F o r / - - / / z = / we get 

£ (-D1 -^~ 
E*,fc-/;- ' —'— 
k=1 

so that 

? + E (-1)'' - ^ 7 1-x> 

(3.10) £ ^k(K-1) = '- — 
k=0 

1-x' 

If we take)/ =z = -1 in (2.13) we get 
oo 

k=1 

so that 

J2 (-Vk<S>k(x,-1) = — [ — — 

1 + 2 T , - ^ 1+2Zdo<n)x" 
(3.11) £ (-Dk^k(x,-D = J ? * = ^ 

k=0 1+Y,-*!-7 1 + J2d(n)x» 
1 1-*' 1 
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where dQ(n) denotes the number of odd divisors of n. Note that the LHS of (3.11) is equal to 
oo 

(3.12) 1 + £ xn £ (- 1)a+kca(n,k). 
n=1 a,k 

4. GENERATING FUNCTION FOR c(n,k) IkUWc a(nfk) 

Whilegeneratingfunctionsfors (n,k) and Fa(n,k) can be obtained from those for c(n,k) and ca(n,k) by using (1.3), 
it is of some interest to derive them independently. Put 

oo oo 

Fafok) - J2 ca{n,k)xn. ®k(x,y) = J^ Fa0c,k)y' . 
n=0 a=0 

Then, exactly as in Section 2, 

~ca(n,k) = ]£ cb(n - a,k), 
b?a 

so that 

Ta(n,k) = xa "2l'Fb(x,k-1) 
bfa 

and 
oo oo 

**(x-y> = H (xy)a H Tb(*,k- D - £ hh*- V ( rz~r - Mb ) -
a=0 h^a b=0 

Thus 
(4.1) ®k(*,y) - j ~ - Qk-iOc,V-Qk-t(x,xy) (k > 1). 

As above, iteration yields 
k~1 hi 

Since 

:(x,y) = ] T J^l— <f>k_j0c,f) + (-1)k'1<!>t(x,xk~1y} (k > 1). 
j=1 f-xJy 

®i(x,y> = J2 <xy>a = jz~ > 
a=0 

we get 

(4.2) *k(KY) " £ S=1L-r *k-j(*.t) (k > 1), 
pi i-x'y 

where 
(4.3) W0(x,y) = 1. 

Fory = /, (4.2) reduces to 
k 

J=J£ S. (4.4) 

It follows that 

QkOctJ+E - ^ 4 - 4>H(x,V = 8k/0 

pi 1-x1 
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<4-5> E *k<x.ikk = —^~J—— 
k=0 ^E^y—-

Now put 
M 1-x' 

Pk(x) zk 

/ = / 1-*' 
so that _ 

<4-6)_ **M-P-Mt • 
The Pk(x) are polynomials in x that satisfy the recurrence 

k 

(4.7) Pk(x) = 2 r~/ j /^ [/ ] MhPHM (k > 1); 
1=1 

also it is clear from the definition that 
(4.8) Pk(x) = xkPk(x). 

For* = / , (4.7) reduces to _ _ 
Pk(V = kPk-td), 

so that 

(4.9) Pk(1) = kL 

Also it is easy to show by induction that _ 
deg/J-W < %j(j- n 

Indeed, assuming that this holds f o r / < k, it follows that the degree of the/f /? term on the right of (4.7) 

<j(k-j) + 1/2jlj- D + %(k-j)(k-j- 1) = M(k- V. 

Let jk denote the coefficient otx^'*'1' in Pk(xl Then we have 
k k-1 

yk = E ?*-/= E v (k > 1)-
1=1 ro 

This gives 

so that 

E vkxfl ? - E * y = i. 
k=0 \ M j 

E Jk*k - 1~K-1-2x ' 
k=0 

Thus yk = 2k~ 1,k> 1, and so 

(4.10) degfyM = M(k- 1). 

Since, by (2.4), 
c(n,k) = 0 (k > 2n + 1), 

it follows \\\%\Pk(x) begins with a term i n ; r J; moreover the coefficient of this term is 1 for k odd and 2 for /r 
even and positive. 
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It is clear from the recurrence (4.7) that all the coefficients are integers. It would be interesting to know if they are 
positive. 

If we put 

Pk(x) = Ys 1(k>J,xi and 157 = 2 P<n,k)xn, 
j n=0 

so that/?f/7,£/isthe number of partitions (in the usual sense) of/7 into parts < k, it follows from (4.6) that 

(4.11) c(n,k) = J2P("-J, kfttKl) • 
J 

Returning to (4.2), we have 

This gives 

i <-»H - 4 -
(4.12) 2 *k(*.Ykk = -^Z 1-~ • 

M 1-*' 

We may rewrite (4.5) and (4.12) as 
GO 

(4.13) 1 + J] I(n,k)xnzk = 1 , 

t <-»H - 4 -
(4.14) 1 + J2 E Ca<n,k)xnyazk = M _ L l i L £ 

By (1.3) we have /=? ; ~ x 

(4.15) £7/j,/tf = c(n + k,k). 

Hence, replacingz byxz in (4.5), we have 

* * 

(4.16) 1+ £ c(n + k,k)xn+kzk 1 

n.k=1 „ V > / „./ x'z1 

t + J^f-r )'-*£-. 

This is of course equivalent to (2.9). 
Since 

~caln,k) = ca+i(n+k, k) (k > 0), 

the equivalence of (4.16) and (2.9) follows easily. 
Note that it follows from (4.6) and (4.12) that 

(4.17) *k(x,y) - £ J=Htl FgM , 
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Sn addition to (4.15) another relation expressing c (n,k) in terms of c(nfk) can be obtained by considering the pos-
sible location of zero elements. There may be a zero on the extreme left or the extreme right; also there may be one 
or more zeros on the inside. Thus we get relations such as the following. 

1(0,0) =J(0,1) = I h~(n,1) = c(n,1) = 1 (n > 1), 
c (n,2) = c(n,2) + 2c(n, 1) (n > 2), 

~c(n,3) = c(n,3) + 2c(n,2) + x(n, 1)+ ^2 c(n u 1)c(n2, 1), 
nx+n2=n 

c~(n,4) = c(n,4) + 2c(n,3) + c(n,2) + 2 ^ c(n u 1)c(n2, 1) + 2 J2 °(n u 1k(nv 2). 
ni-"f

,n2
ssn nl+n2

s=n 

It follows that 

J^f$k(x,Vzk = 1+z + (1+z)*J^<l>k(xJ)zk + (1+z)>zlY,®k(x,1)^ y+(1+z)'zYE*k(x,1)*kl *'" 

(1+z)* ] T <$>k(x,t)zk 

= 1+z + 1 m 
oo 

1~z V <bk(Xf1)ik 

1 
It is easily verified that this is in agreement with (2.8) and (4.5). 

5. GEWERATliG FU!\fCTIOf\IS FOR cfn) AND F(n) 

We may not put z = 1 in (4.5) since the right-hand side then becomes meaningless. We can get around this difficulty 
in the following way. 

To begin with, we shall get crude upper bounds forc(n) and c~(n), Let v(n>k) denote the number of solutions in pos-
itive integers of 

n = ax+ a2 + ••• + ak 

and let v(n,k) denote the number of solutions in non-negative integers. Then 
vM = (°kZ)) , v(n.k)-("?_-,') -

Clearly 
c(n,k) < v(n,k), c (n,k) < v(n,k). 

It follows that 
(5.1) c(n) < 2n~1 (n > 1), 

so that the radius of convergence of 

(5.2) 

is at least V2. 
As for FfW, since 

we get 
2n+1 

F(n) < J2 
k=l 

so that 

c 

{ 

(n,k) •-

n +k-
k-

E 
0 

= 0 

V) 

c(n)xn 

(k > 2n 

2n 

= £(" 
k=0 

+ 1), 

r) 2n 

<£ 
k=0 
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(5.3) 
~c(n) < 23n. 

Hence the radius of convergence of 

(5.4) J2 c(n)xn 

o 
is at least 1/8; 

Presumably these bounds are by no means best possible. It seems likely that the radius of convergence of (5.4) is 
about Vz. 

Next consider 
2k k I \ <*> 
y t-1\H Z' = Y f Z2'~1 _ Z2' - V 1-Z+X2H(Z-X) 2j-1 

PI 1-x' M \ J - X 2 H I - * * ) M <l-x2H)(1-x2i> 

Thus (4.5) becomes 

(5.5) Yi ®k(*,Vz k 
0 /_ y* i-z+x2H(z-x) 

1 (1-x2H)(1-x2i) 

It is now permissible to \etz-> 1. We get 
oo 

(5.6) V ) c (n)xn = 1 

1-a-x) Y, x2j-i 

3 105 31.63 

i (1-x2h1Hl-x2i) 

Forx = & we get 
1/2 . 1/8 . 1/32 _ 4_ . J6_ . _32_ . , 

('-})('-!) I'-iK'-i) [>-A)(>-A)" 
Thus the radius of convergence of (5.4) is probably somewhat greater than 1/a. 
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