ON A GENERALIZATION OF THE FIBONACCI NUMBERS
USEFUL IN MEMORY ALLOCATION SCHEMA; OR
ALL ABOUT THE ZEROESOF Z¥ —zX"1 — 1, k> 0

HELAMAN ROLFE PRATT FERGUSON
Brigham Y oung University, Provo, Utah 84602

ABSTRACT

A generalization of the Fibonacci numbers arises in the theory of dynamic storage allocation schema. The associated
linear recurrence relation invaolves the polynomial zk _ Zk-1_ 1, k > 1. A theorem is proven showing thatall the
zeroes of this polynomial lie in the intersection of two annuli.

Complete information about the sequence then follows, e.g., expressing the elements in terms of certain sums of bi-
nomial coefficients and sums of powers of roots, limits of quotients of terms, and limits of roots. Tables useful for
storage design are included.

A certain linear recurrence relation arises in the theory of memory allocation schema which generalizes the linear re-
currence defining the Fibonacci numbers. The generalized numbers may be expressed as the coefficients of a rational
generating function where the denominator of the rational function involves the trinomial Zk — 7K1 _ 1, From this
fact follows two expressions for the numbers themselves, one in terms of linear combinations of the powers of the roots
of the rinomial, and another expression giving the numbers as sums of binomial coefficients which lie on a line of
rational slope falling across Pascal’s triangle. The former expression gives complete information on the limit of succes-
sive quotients. This latter data depends upon the location of the roots of this trinomial: all complex zeroes lie in the
intersection of two annuli in the complex plane. See Table 1 and Figure 1 for explicit numbers and visulization of the
following central theorems.

Theorem A. Let k > 1. All of the k zeroes of ZX — 2K~ — 1 are distinct and lie in the intersection of the two
annuli
N s 2] s and N-T <21 < T+),,
where Ae = Aefk/ is the largest (positive) real solution of
K- 110 e=01 0<A <1<\ <2
Table 2 gives approximate values of these \¢ = Aefk), k=1,2, -, 20, 100.
Theorem B. Let k> 1. Define fion = Ton-1* Tn-k 7 Ta,j= 0 ] <k fx = 1. Then
N/ .
nlgw%’ = Nfk) and lim N (k) = 1.

The proofs of these theorems depend upon two sequences of lemmas, those bearing more directly upon Theorem A
or B; we number the lemmas accordingly.

Lemma Al. Letp(Z)=2% — z¥ 7 _ 1 k> 1. None of the zeroes of p(Z) are rational; all of the zeroes of
p (1)(7) are rational.
Proof. Since

pliiz) = k2*2 (7K1 )
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Figure 1. The Two Annuli Theorem
(The shaded region represents the region in which all of the complex zeroes of zk_zk-1_4 mustlie.)
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Table 1
The Sequences i , = fk,n-1* fi.n-k
With fy j = 0,j <k e = 1,k >1

nk 1 2 3 4 5 6 7 8 9 10 N
0 0 0 0 0 0 ©0 00 0 0 O
1 1 0 0 0 0 0 00 0 0 O
2 2 1 0 0 0 0 00 0O O0 O
3 4 1 1 0 0 0 00 0 0 O
4 8 2 1 1 0 0 00 0 0 ©
5 16 3 1 11 0 00 0 0 O
6 32 5 2 11 1 00 0 0 O
7 64 8 3 11 1 100 0 0
8 128 13 4 2 1 1 110 0 0
9 256 21 6 31 1 11 1 0 0
10 512 34 9 4 2 1 11 1 1 0
1 1024 55 13 5 3 T 11 1 1 1
12 2048 89 19 7 4 2 11 1 1 1
13 4096 144 28 10 5 3 11 1 1 1
14 8192 233 41 “ 6 4 21 1 1 1
15 16384 377 60 19 8 5 3 1 1 1 1
16 32768 610 88 2% 1 6 4 2 1 1 1
17 65536 987 129 36 15 7 5 3 1 1 1
18 131072 1597 189 5 20 9 6 4 2 1 1
19 262144 2584 277 69 26 12 71 5 3 1 1
20 524288 4181 406 95 34 16 8 6 4 2 1
21 1048576 6765 595 131 45 21 10 7 5 3 1
22 2097152 10946 872 181 60 27 13 8 6 4 2
23 4194304 17711 1278 250 80 34 17 9 7 5 3
% 8388608 28657 1873 345 106 43 2211 8 6 4
25 16777216 46368 2745 476 140 55 28 14 9 7 5
26 33554432 75025 4023 657 185 71 3518 18 8 6
27 67108864 121393 5896 907 245 92 43 23 12 9 7
28 134217728 196418 8641 1252 325 119 63 29 15 10 8
29 268435456 317811 12664 1728 431 153 66 36 19 11 9
30 536870912 514299 18560 2385 571 196 83 44 24 13 10
31 1073741824 832040 27201 3292 756 251 105 53 30 16 11
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Table 2
Xe = Aefk), € = 0,7 is the Largest Positive Real Root of e (—)&kT - g,

The roots are truncated to 25 decimal places; see [3].

k X, (k) Nofk)
1 2.0000000000000000000000000 0.0000000000
2 1.618033988749894 8482045868 0.6180339887498948482045868
3 1.4655712318767680266567312 0.7548776662466927600495088
4 1.3802775690976141156733016 0.819172513396 1644396995711
5 1.324717957244 7460259609088 0.8566748838545028748523248
6 1.2851990332453493679072604 0.8812714616335695944076491
7 1.2554228710768465432050014 0.8986537126286992932608757
8 1.23205463142857229593 196 76 0.9115923534820549186286736
9 1.2131497230596399145540815 0.9215993196339830062994303
10 1.1874914335516807746915412 0.9295701282320228642044130
1 1.1842763223508938723515139 0.9360691110777583783971914
12 1.1729507500239802071448788 0.9414696173216352043780467
13 1.1631197906692044 180088153 0.9460285282856 136156355381
14 1.1544935507090564 328867379 0.9499283999636 198830314051
15 1.1468540421395067272864 110 0.953302537401664 1591079826
16 1.1400339374770049101652704 0.9562505576379890668254960
17 1.1339024903348373489121350 0.9588484010075613716652026
18 1.1283559396916029856471042 0.9611549719964985735216646
19 1.123310806246326 7587889592 0.9632166633389015467989664
20 1.118699108052226049455444 2 0.9650705109167162350928078
100 1.034 0.9930

Figure 2. Combined graph ofx¥ — x

k-

focT.

T_ 1=y for k even and odd. There is a local minimum atx = k—;—’ .
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we see that the roots of pm(Z) are 0 with multiplicity k — 2 and (k — 7)/k with multiplicity 1, both ratlonal Since
p(Z) ismonic with integer coefficients any rational root must be a gaussian integer. From the relation 2K~ 7(7 = 7)= 1
it is easy to infer that Z cannot be integral.

Corollary A1. Define the collection of zeroes of p(Z) to be
Zi ={Z e l:plZ) = Ué = {Kk’j,'\<j < k} .
Then [Z4] =k, i.e., the roots are distinct, and we can order them
il < jerl,  F= 12 k=1
with equality iff Ax ;is the complex conjugate of Ag jr7.

Proof.  From Lemma A1 we have proven that p(Z) and pm{Z) are relatively prime (£ is algebraically closed)
which is sufficient for the roots to be distinct. We note that in addition to nonreal complex zeroes occurring in con-
jugate pairs, exactly two roots are real if & is even and exactly one is real if & is odd.

Lemma A2. There eX|st numbers, 0 < A, < 1 < A, < 2 dependent only upon &, k > 1, such that all of the
zeroes of p(Z) = ZX = 257 — 1 lieinan annulus A, <|Z] <A, centered at 0 and inan annulus X, — 1<|Z—- 1] <
1+, centered at 1.

Proof. Since p(0) # 0, any complex zero Z of p(Z) has norm |Z|=r > 0 and p(Z) = 0 gives |Z— 1| = r17K. Thus
any zero lies on the intersection of the two circles |Z| =rand |Z - 7|= 1=K \with fixed centers. There are two cases of
empty intersection: one circle lying wholly inside the other. Comparing radii of these circles there will be a non- vacuous
intersection ifr<7 +r7 K orifr< A, where A, is the largest positive root of p(Z). (1). The second case Of)( r l}/
ing inside |Z— 7| = r! ylelds 0< rk + k=1 7 orr> A, where A, |s the largest posmve rootofg(Z)=2
1. Locatlng these roots gives the inequalities above and noting that 7\ =1+X, 7\ -k -1 bounds the radius
r!

Corollary A2. Set N i =N1(k)=Xy. Then Ny(k) is real and |Ag ;| < Ngfk) for 1 <j< k.

Figure 3. Combined Graph of xK#xk?_ 1= y for k Even and Odd. There is a local
maximum and minimum atx = (7 — k/k.
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Proaﬁ A, is, from the proof of Lemma A2 the largest possible real root of p(Z). Note that if k is even that —A,
is the smaliest real root of p(Z/

Lemma A3. Let
2 N
1<j<k
be any (complex) linear combination of the n™ powers of the zeroes of p(Z). Then, for

2 G N j

1<j<k

. < AN .

A= Ci| < k max |C;
Kzlékij max 1€

,Proof: This follows directly from Corollary A2 and the usual absolute value inequalities. This Lemma gives infor-
mation on the rate of growth of the integers f ,.

Lemma A4. Forpglx)=x* —x*1_1

’

1+ 2. pitx) = x* — k.
1<j<k

Proof. The sum telescopes. The purpose of this simple Lemma is to motivate the next Lemma; the largest positive
real zero of the sum is k%,

Lemma AS5. Letk>3. Then 1<), (k)< k',
Proof. Sincep(1)=—1 we need only show that p(k 1K) > 0. For k > 3 it is clear that

1
7+2(k— 77 <Ink.
But
1 1 _ 1 7 1

I _ g o1, T, 1 P 1
‘oo TxtTwtw T txtnr Tt k’”(’ k>

so that
Rewriting, we have

exp is order preserving so that

Then
1 1
—_t ———
0 < X kl/k <1

But this gives

Lemma A6, Letk >2 Then k™% < \ (k) < 1.
Proof. For
glz) = x*+x5 11, (1) = 1

it is sufficient to show that q{k"/k} <0, Itisclear that k7% < k — 1 for k an integer larger than two. But then 7 +
k 1/k < k gives
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1/k
1,k
0> i + p 1 =qlk’™).

Lemma A7. Jim_ k"* = 1
Proof. This follows from jlim_ (In k)/k = 0.

The development concludes the proof of Theorem A and the second limit of Theorem B. We now proceed to the
rationality of the generating function, the two closed form expressions for its coefficients and the limit of successive
ratios.

Lemma B1. Let fy , be defined as in Thearem B, For & > 1, the generating function for f¢ ,, viz.,

(1) Gilt) = Y, fint”
n=>0
is a rational function of ¢ In fact, '
tk
(2) Gklt) = —
1—-t-t
(3) = tk Y‘ _..Al(JL—_ 3
— 1Nt
1<I<k .
where the A ; are as in Corollary A1 and
_ k
(4) Ak'l' = Bk,i)\k,j
with
Mej— 1
. = K.J
(6) Bk.j kg, j— (k — 1)
Proof. Given equations (2) and (3), we have
(3) 1= 2 Ak Lﬂk :
- 71— A jt
1<j<k -
From Lemma A1, and letting ¢ - )\,'(17/ we have
k
(4.) Ak,j = ._.}\k‘L_-T
- klj

which, with A} =2 ; — 7 yields (5).
From the initial conditions, fx ;= 0, j <K, fg = 1 we have fy 4+ = 1, 0 <j <k by referring to the relation

(6) fe,n = fa,n-1+ fin-k -

Then

(7) ' Grlt) = 3 fot" 4+ D0 fpt”

k<n<2k n>2k

and

(8) tGi(t) = Z f,-,_1tn+ Z f, _1tn
k<n<2k n>2k

9 t5Grlt) = 0+ ) fot".

n>2k
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From the relation (6) we have the equation

(10) i) = D, Fogt" +tGelt) = Gelt) = Y fat".
k<n<2k k<n<2k

Isolating Gy (t) and noting that

(11) th= 3 fpt"= Y fpgt"

k<n<2k k<n<2k

we have

(12) Gilt) = P

1—t-t
k
_ t
(13) Im (1- 7\k,jt}
1<j<k

where Ay ; are the solutions of zk_zk-1-¢ Clearly,
Ij

(14) 2 M=, 0 M= (~1)%7 .

1<j<k 1<i<k

Since, by Lemma A1 the A ; are all distinct we have the partial fractions decomposition stated in the Lemma, Eq. (3).
Lemma B2, letk=>1.

(15) fk,n= Z (n—k—mlk—ﬁm)
osm<(n-k) /k

Proof. From Eq. (2)in Lemma B1 we have

k
(16) Gilt) = —F—
1—(t+¢K)
(1m =k Z 51 +%-1)°
s=0
(18) DY (;) ¢ lk=1)m
s=0 o<m<s

(19) - Z Z (;)ts+k+(k—1)m

s=0 0<m<s

(20) ,=Etn Z (n—k-—”ck—ﬂm)

n=>0 o<m<(n-k)/k

Thus (15) follows from the definition of G4 (t) Note thatif k=7,
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(21) fin = Z ( n- 1) s

agsm<n-1

corresponding to summing Pascal’s triangle horizontally. If k = 2, the case of Fibonacci numbers yields the familiar

(22) fon= 2, ("~,§—'") .

osm<(n-2)/2

corresponding to summing the binomial coefficients lying upon lines of slope 1 through Pascal’s triangle. In general one
sums along lines of slope & — 7. See Figure 4.

1
1
1
1
frs=16 .1 ...
1
for=8 .. 1 B 15 20 15 6 1
17 7 21 35 35 21 7 1
<1 8 28 56 70 56 28
f310= 9 1.9 36 84 126 126
110 45 120 210
1 11 55 165
. 12 66
fo1a=1" 1 13
1

Figure 4. The Numbers fy , as Sums of Binomial Coefficients Lying Upon Lines of Sfope & — 7 through Pascal’s
Triangle. (See Lemma B2.)

Lemma B3. Letk>1. Then

Mj— 1)
(23) fon = 2. /;7\;]—_*!(;_—77 Nei -

1<j<k
where the Ay ; are the zeroes of

Faly AL
Proof. From Eq. (3),

K
(24) Gelt) = ¢ 20 Ay 3 N7,

19<k n>0
(25) = N AN
n=0 1<f<k

(26) =" Y BN

n=zk 1<j<k
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Table 3
Real and Complex Zeroes Rounded to Five Places, A j,j=1, 2 -, &, of the Polynomial Zk 7K1 _1tork= 12, 10

(The zeroes are listed in decreasing order of modulus. A more complete table of these roots, k = 1, 2, .-, 20 to 28 sig-

nificant digits is available upon request .}

ko Mk

1 2.00000

2 1.61803 —0.61803

3 1.46557 —0.23279 +i0.79255

4 138028 0.21945+i0.91447 —0.81917 .

5 132472 0.50000 +i0.86603 -—0.66236 +i0.56228 -

6 1.28520 0.67137+i0.78485 —0.37333+i0.82964 —0.88127

7 125542 0.78019 +i0.70533 —0.10935 +£i0.93358 —0.79855 + i0.42110

8 1.23205 0.85224 +i0.63526  0.103311i0.95648 —0.61578 +i0.68720 —0.91159

9 1.21315 090173 +i0.57631 (.26935+i0.94058 —0.41683 +i0.84192 —0.86082 +i0.33435
10 1.19749 0.93677£i0.52431 0.39863 +i0.90691 —0.23216 +i0.92442 —0.73720 +i0.57522 —0.92957

Lemma B4. Fix k> 1. Then

(27)

fk,n+1

lim
fk,n

n— o

= >\k,max .

where A max is the largest positive real root of 2% - 7K1 _ 1 In fact, Nk, max = Mk -
Proof. From Lemma B3,

2 BN
(28) flnt1 1<k

f] k.n

2 BiXl;
1<j<k

Define Ak, max to be the zero of 25— 251 _ 1 with largest absolute value. Then

R +7
3 Bk,j( )\_)‘_’S_L_) ?
Fre-544 . P k,max
(29) —‘“‘_'/;n‘."’ = M,max Pe/sk
k,n X n
5 s e
k,max

1< <k

Letting n— <, each sum in the quotient has one or two terms depending upon whether Ag may is real or complex and
in the latter case the limit need not exist. But from the proof of Lemma A2, )xk,max is real and is equal to Ag x. {Each
nonreal complex root has absolute value r such that 7+ r =k - rorr< Mk =Ag (kJ.) Since

; . no_ s
plim i/ Nei)” = 8,

the Lemma follows.
Lemma A8, Letk > 1. Then

(30)
where

Bontr = (1+ugn) /7Y,

Proof. Clear

)\E(k} = n“—‘;nec “G,n

Moo = 1

and

- 1-k -
Bintr = T+l ,. M1,0 = 1
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Lemma A9. Fork=>0
(31) N (k) > N (k+1).
In other words A, (k) converges monotonically to 1as k — .
Proof. (2]. Letr=\(k),s=X\,(k+1). Thenr>1,5s>1,r#s and

ik —rk-1_1) =g, skt _sk_1=0.
Subtracting the second equation from the first and dividing through by r — s we have

(32) (I'k+7 —$k+7) _ (I'k—.fk} = r=1
r—s r—s r—s
But the left-hand side is positive because it equals
(33) Kl = 1T 4 K2 g ppske2 5T
Thusr—s > 0.
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