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This relation arose because
X3 —x*=-2x-2
is a factor of
X —3x% —4x -2
Since
X3 —x?*=2x-2
has a real zero 0 between 2.2 and 2.3, it follows that
fln) > (2.2)"
for all sufficiently large 7.
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which tends to _
log 1+2 5

as n — = and this completes the proof.

in addition we want to mention another interesting property possessed by the sequences of the previous
theorems. This property can be shown by applying a result of Vanden Eynden (see [2] p. 307): Let {C,,/bea
sequence of real numbers such that the sequence (C,,/m/ is u.d. mod 1 for all integers m > 2. Then the se-
quence {/C,]) of integral parts is u.d. in the ring of integers Z. '

Theorem 4. The sequences
(fog F1% ], (fog HoHpl) and  ([log (Hy + Hpy )l
are ud. in Z.

Pmof. It is easily seen that for all non-zero integers m the expressions
1 1/k 7 ® 7
nT'Og Fn/ A log (HaH,)  and o log (Hp, + H)

satisfy the condition in van der Corput's Theorem.
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