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1. INTRODUCTION

In this paper we are concerned with the summation of a number of series. They are

o0 o0 co _71- oo
(—1)rT coth i E tanh (2r+7)2 Z 1)
= P Tsiohem 2 APT = ere 1)t g (24 )% 3 0sh (2 + 7)%
Y U ) e
=1 sinh =0 cosh (2r+ 7);
and I
i i24p coth rg- — coth err}
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wherep=1,23, -

Certain of the above series have heen extensively discussed in the past. Results for particular values of p are given
by Ramanujan in [4], while Phillips, Sandham and Watson in [3, 5, 6] have determined, by varying methods, sums
for general p. The last series of the group, however, seems to have received less attention. It differs from the others
in that it contains the inverse powers of 4p + 7. Further, it is closelv related to the Riemann Zeta function {(4p + 7).
As this paper shows, the sums of the series, where they are not identically zero, satisfy recursive relations containing
binomial coefficients.

Thus if we write

_ (—1)Pap) (=1)"
,”4p—122p-2 = r4p-1

7-4p—1
sinh rm

then
n
Y [4n+2 = =
2 ("52) Taer=1 n=12

The recursive relations are themselves of interest and can be inverted. Their inversion, which leads to the sums of the
various series, involves the Bernoulli and the lesser known Euler numbers.

All results are obtained by considering the Neumann problem for the rectangle. Although this problem is of an ele-
mentary nature and is in fact discussed in both contemporary and established literature on Laplace’s equation, a com-
plete solution to it does not seem to be available. Kantorovich and Krylov in [2] proposed a method of solution but
the suggested method contains, as we shall show, an error of principle. Once this error is removed the method can be
applied to solve the problem. Initially, therefore, we state and solve the Neumann problem for the rectangle and then
subsequently in Section 3 make appropriate use of the solution to obtain the various results.
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2. THE NEUMANN PROBLEM FOR THE RECTANGLE
This problem requires the determination of a function ¢ (x,y) satisfying

(2.1) dxxtdyy =0 for O0<x<a 0<y<b
2.2 oylx,0) = fix), ¢ylxb) = glx) for 0<x<a
(2.3) ox(0y) = Fly), ¢xlay) = Gly) for 0 <y <b,

where f{x), g{x), F(y) and G(y) are known functions and the subscripts x and y are used to denote partial differentiation.
It is necessary for a solution that

39 4o =
(2.4) cf % ds =0,

where ¢ is the boundary of the rectangle, 3/an denotes differentiation with respect to the outward normal to ¢ and s
refers to arc length. The condition (2.4) is equivalent to
a b

(2.5) f (f—gldx + f (F—Gldy = 0.

0 0
We now briefly describe the method used by Kantorovich and Krylov in [2]. We put® = U + V, where U and V are
functions of x and y. We choose the function U so that it satisfies (2.1), (2.2) and U, (Oy) = Ux(ay) =0forO0<y <
b, while V satisfies (2.1), (2.3) and V,,(x,0)= V) (x,b) = Ofor0 <x <a.

Thus, the original Neumann problem is replaced by two other Neumann problems, one for U and the other for V.
It is evident that if we can find U and V/ we shall fulfill the conditions imposed on ¢ by (2.1) to (2.3). By virtue of
(2.4) the existence of U requires

a
S (f—gldx = 0.
0
Likewise, the existence of V/ requires
b
S (F-Gldy = 0.
o

However, given functions £, g, F and G satisfying (2.5), it does not necessarily follow that the integrals

a b
S (f—gldx and S (F—Gldy
] 0

are each zero, and therefore the functions U and I may not exist. Yet the difficulty is readily overcome. We write
¢ = Alx2—y?)+U+V,
where A is some constant to be found, while the functions ¢ and V each satisfy (2.1) and the further conditions:
UxlOy) = Uxlay) = Vy(x,0) = V,(x,b) = 0
Uyx,0) = fix), Uylx,b) = glx)+2Av for O0<x <a
Vi(Oy) = Fly), Vxlay) = Gly)—2Aa for 0 <y < b.
Using (2.4) we require for the existence of U and V/

a

a
S {g(x}+2Ab— fix)fdx = 0, ie, 2abA = f (f-gldx
0 0

and



1976] THE SUMS OF CERTAIN SERIES CONTAINING HYPERBOLIC FUNCTIONS 217

b b
S {6t -28a-Fty)}ay =0 o 24 = f (G- Fldy.
0 g
Equation (2.5) shows that these two expressions for A are consistent. Having found 4, we can now follow the pro-
cedure given in [2] to determine ¢ and V. In fact, it can be verified directly that to within an arbitrary constant ®

is given by
© g {g,coshr—ﬂzzf,.coshrjI (b—y)}
(2.6) ¢ = Alx* —y?) + lifyy + BFox + 3 a - cos X
=1 rsinh T a
- m_ I (o }
L o b {G,cosh b F,cosh A (a )(}J T
=7 rmsinh 2 b

where 7., g, (r=20, 1, 2, --- ) are the Fourier cosine coefficients for f(x/ and gfx), respectively, over the range < x <
aand F,, G, (r=0, 1, 2, --) are the Fourier cosine coefficients of Ffy) and Gfy) over0 <y <b.

3. APPLICATION CF THE SOLUTION TO THE NEUMANN PROBLEM
We put a = b = wand define functions ¢(x,y,4n), wheren=1,2, 3, -, by
(3.1) 20(x,y,4n) = (x +iy)*" + (x — iy)*".

It is readily verified that these functions satisfy (2.1). Further, using (2.2) and (2.3), we deduce for them that #(x)
and F(y) are both identically zero. In addition

o) = 2n { wei)™ T+ (moi* 1Y and  Gly) = 20 (we i+ (m- iy}
Thus, the Fourier coefficients 7, and F, are all zero, while g, = G, =1.(n) (r=1, 2, - ), where

w
3.2) 1.(n) = Re 4—1# S [t ix)*™ 1 & fn— ix )" 16" gx
(]

using the result

a
2abA = J’ (f— gldx
4]
we find that the constant A vanishes and hence with the help of (2.6} we can write

- w {cosh ry cos rx + cosh rx cos n/}
(3.3) olx,y,4n) = cqn + Zj Ir(n) P
r=

the c4p, (n = 1, 2, - ) being constants which have yet to be determined. Successive integration by parts of {3.2) leads
to the result

ntr
(3.4) tytn) = L= 73220 4n)an - 1)+ 22 (an — 1)fan - 204 = 3)idn — 1) .
In particular
- r+1 48
(1) = (1) 28
so that puttingn = 7 in (3.1) and (3.3) we find

! (1)1 {cosh ry cos rx + cosh rx cos /y}
(3.5) X4=Bxtyt +yt = o, +48m 2 r* sinh

r=1
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Repeated application of (3.4) yields

(3.6) Iotn) = (=17 4 22 (n) , asln) , ay(n) , agn-2(n))
re r r4""2
where, for example,
(3.7) a,(n) = (~1)"7*"32%"4n(an - 1)
and more generally '
(3 8) a4p_2(n} = (__ I)n—p+1ﬂ_4n—4p+122n~2p+2(4p _ 2}/ (4p4_l_12 ) , p= 7’ 2] o, n

Using this last result, it follows
agp+2(n+ 1) = (4n +4)(4n + 3)(4n +2)(4n + 1)agp-2(n)
and hence from (3.6) that

(3.9) (4n +4)(4n + 3)(4n + 2)(4n + 1) /,(n)

rt1
= ln+1)+ (_Iiz a,in+1).

We now proceed to find the constanis c4,, occurring in (3.3). We integrate Eq. (3.3) twice with respect to x and twice
with respect to y. These integrations will introduce arbitrary functions of x and y. We have, therefore,

-0 (x, v, 4n+4)
(4n + 1)(4n +2){4n +3)(4n + 4)

+xPply) + Qply) +ypn(x) +qn(x)

- xyr / {cosh ry c0s rx + cosh rx cos ry} )
fan = Z rfn) r® sinh rm

where p,, (x), g, (x), Po{y) and Q,, (y) are arbitrary functions which may depend on n. Noting the result contained in
(3.9) we can write this equation in the alternative form

{— 7) \ { cosh ry cos rx + cosh rx cos ry}
+4) = +1)+ 2
olx, y, 4n +4) E, Iefn +1) a,(n+ 7) s
-

+(4n + 1)(4n + 2){4n + 3)(4n + 4) { XPp{y) + Qnly) + ypn(x) + Gplx) = ca i‘%}’—}
This reduces with the help of (3.3) and (3.5) to

+
0= C4n+4+a_(:8 ”——(x" 6x3y2 +y* —¢,)

+(4n + 1){4n + 2)(4n + 3)(4n + 4) ixPn (v) + Qply) +ypplx) + Gnlx) — can X—;—

This is an identity. Hence equating to zero the coefficient of x2y? we deduce with the aid of (3.7)

(—1)" 1T4n 22n

.10 an = G+ i)ln+1)
Thus we have
3.11) (x _,_I-y}4n +(x — iy)4" = Jeqp+2 Z /r(n) {CDSh s Cﬂjg)l(n'; ’C’;JTSh X cosry }

r=1
where c4,, is given by (3.10) and /,{n) by results (3.6) and (3.8). Putting x = y = 0 in (3.11) and simplifying we obtain

— P'7 /
_ 7 (~1) (-1)°""(4p - 2)! ( 42 ) ) )
0 (4n + 1)(4n + 2) Z rsinh rm pg; 740-1720-2,4p-2 n=12-
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Thus if we write

_ 1P (1)
(3.12) Tap-1 = =11 00)L 5~ , p=12-
a¥%=1220-2 = T Ginh e

then it follows 74, 7 satisfies the recursive relation

n
(3.13) =3 (4';;2) Tape1 n =12
p=1

This is the first of our results. We now show how this recursive relation can be inverted to give 74,7 in terms of the
Bernoulli numbers. To do this, we observe that (3.13) can be put in the alternative form

7 - Z T4p-1
(4n +2)! . (4p)1(4n + 2 — 4p)!
p=

Multiplying both sides of this equation by x#7*2

JAnt2 Sl Tan _x4n*2 o~ Tgpo1x P yAk+2
}: (4,; w21 - 21 L (@p)ilan +2—4p)! pz_; (4p)! E (4k+2)’
o =

and summing from n = 7 to < yields

After some mampulat on we obtain
(3.14) Taoos 220 LSNP h hi
. Z 4p-1 74_/7)—, = cm = -2- cosech ax cosech/ax,

where 2a= 17 +1.
Using the expansion of cosech x given in [1] Eq. (3.15) leads after some simplification to

(1Pt &
Tap-1 = ;2p_2 2. (~1)2(2%9°1 — q)(2%-2a-1_ y) ( ) BqB2p-q -
q=0

It should be noted that B, is taken as —1 while the Bernoulli numbers are defined here by

X =7-% +Z‘ (-1)P* 1B, X (2), .

e* -1
With the help of (3.12) we deduce

oo

2p
g+t _ _1)97929-1 _ 4p-29-1 _
0™ et S (212 (2 U Bybapeg -

s A=1 Gioh ro (2q)! (4p — 2q)!

In a similar manner if we putx =y = win (3.11) and define 5457 by

Sap-1 = (- 7)P‘77T1-4p2-2p+2(4p )1 E coth rm
r4p-1
then

n
(3.16) (4" +2 ) S4p-y = 2n(4n+3)
p=1
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S4p-7 can also be expressed in terms of the Bernoulli numbers. By writing {3.16} in the form

Z S4p-1 =10 1 2
{4n —4p + 2)’(4/1) I 2) (4n)!  (4n+2)!
and following a procedure similar to that for 74,7 we find

4p 2
E Sdp~1 (7)‘:”7,— =~ )(7 coth ax cothjax ~ 7.
p=1

Since (see [1]),

xeothx = 9 (~1)P1B,2% X

/

=0 (20)1
we have

Zp

sap-1 = 2% > -1F a (;Z ) BgB2p-q

q=0

giving
coth rm _ ,4p-2, 4p-1 (-1)9" " ByBap-q

(3.17) = 2 E (Zq)l(4p 2q)/ )

r=1

We next put x = 0, y = 7 in (3.11) and subtract from twice the result the expressions obtained by puttingx =y = 0
and x =y = 7. This leads to

, = tanh (2r+7) T
(3.18) 714 (=122 = 3 2gpay(n) 2
=0 (2r+ 1)%-1

Writing
tanh (2r+ 1)
(3.19) Qup-1 = (~1)P 0P 12720 S gp)r 3~ Z

o (2r+1)%T
(3.18) gives with the aid of (3.6) and (3.19)

n
4n +2 _ +1,1-2
(3.20) ¥ (0?) Cao-r = tan s 1dan+2) {14012}
p=1
This is the third of the recursive relations and may be compared directly in form with (3.13) and (3.18). yp-1 can
also be expressed in terms of the Bernoulli numbers,
From (3.20) we deduce

oo

ol ton k+2
o 2 et (2( 32 Q-1 7y (4p)/ gi; (4k+2l'%

n=1

or, after some manipulation,

E Q4p-1 x% = x2 {coshx+cosx—2coshax—~250$ax+2}
. =1 (4p)i cosh x — cos x ’
p=

where as before 2a = 7+74.
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The right-hand side of (3.21) can be expressed as

2 .
% { coth CLZX coth ’%’—ﬁ — 2 coth ax coth jax — 2 cosec ax cosech jax — tanh aZ_X tanh l—%i} .

Recalling the expansions for coth x, cosech x already used and noting that in [1] for tanhx we obtain after some
manipulation

_ (=1)P(4p)! q (229 _ 12?9 y)
Qap-1 920-3 2 (=1) (2q)!(4p — 29)! BqB20-q

and hence by (3.19)
= tanh (2r+ 1) % L 4p

_ a1 (2%729— 1)(2%9 — g)
(3.22) > 1)4/9-1 E -1 2q)itap - 201 ZaBao-q -

The expression in (3.11) can be differentiated as many times as we wish with respect to x and y at points within the
rectangle.
Differentiating once with respect to x and once with respect to y gives

3.23)  (2n)4n — 1)il(x +iy)*"2 — (x — iy)*""2] = Z (s| e 'r [sinh ry sin rx + sinh rx sin ry/

n
Z (—1)Pn*1 4n-4p+1 22"_2p+2(4g 2)! ( 4n )
‘ Ap-2 -2
p=

Puttingx =y = /2 in (3.23) and defining R4p-3 by

oo

_ (=1 Y (-1)"
(3.24) Rap-5 = 25 27 (4p — 2 Z_oj (24 1% cosh (214 1) &
yields
n
(3.25) M—”—’L;’gf——” - Z;( w2 Rz
s

The quantities Agp-3 can be expressed in terms of the Euler numbers (see [1]).
Following a procedure similar to earlier ones, we can deduce from (3.25) that

4p 7 ax iax

~ X _ 1 ax
Z Rap+1 ol T2 sec 2= sec 5=

p=0
Since
x2a
secXx = Z q (Zq}/ ,
q=0

where £,, E,, -, are the Euler numbers and £, is taken as unity, we obtain

EqE2p-q

_ (—7) _1)9 __=q°
(3.26) Rap+1 = (4/’*?/’ Z (=1) (2q//(4p 2q)7

and hence
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oo 2p q
@.27) 0T paetipaes N CUEE2g gy,
=0 (2r+ 1)%P*1 cosh (2r + 7}% =0 (29)!(4p — 2q)]
Putting n = 7 in (3.23) yields
S eyt
(3.28) xy =2m Z;, r—‘g—in—{‘)—E { sinh sy sin rx + sinh rx sin ry } .
r= »

Hence differentiating once with respect to x and then y we have, on puttingx =y =7/2

_ > r{_”r‘f'I
1=4n Z, sinhrr °
=

If we differentiate (3.28) (2p + 7) times with respect to x and (2p + 7) times with respect to y then forx =y = n/2
we find

Likewise differentiating (3.28) (2p) times with respect to x and Zp times with respect to y leads to

o~ (2r+ 1% _1)"

=0 t:thh(2r+7);—r =0 p=12Z-

We now proceed to find the sum of the last of the series referred to in the Introduction. Using the results of Section
2, it can be shown forn=1, 2, -

(3-29), _27_{ (x+iy)4"+2+(x—iy)4”+2} _ (—7)"174"22"(X2—y2/+2 (—1)" {cosh rx cos ty — cosh ry cos rx |
r=1

rsinh rm

4n-4p+1

n
_nti-p T 2n-2p+21, ), { 4n +2)
x ; (1) & 2 o)t (*ys i

The constant appearing in the Neumann solution is determined here to be zero by observing that each side of (3.29)
vanishes whenx =y =0
Puttingx =, y = 0 in (3.29) and defining M4p+7 by

> r+
(3.30) Mapsy = (—1)P* 19071 7 20%24p)1 5 ’—"5-151——925*!11 p=12-
leads to =1 P sinhrr
n
(3:31) 3 Maper (22 = 10020
p=1

From the recurrence relation (3.31) we deduce

4p . . . .
0 X / ax ax / ax 1ax
2 M. = + = =2 =t =2 =
4p+1 (lp)l 7 7 cot 2 tan 2 2 tan 2 cot 2

and hence
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20 4p-2s+2
. Up)! s _(2 -1
Map1 = (~1)P 2—{-2-;?)3 > =z BBt
=0
Since

= { coth rz_rr__ 27% coth 2rm

g (1) coshrm+ 1 _
B ]

rP*7 sinh rr =1 2 Pt

r=1
we can, noting (3.30), obtain the required sum. It also follows for p > 3 we can obtain a good approximation to

o rm
pppiy]
=1 I i
in terms of the Bernoulli numbers.
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