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1. liTRODUCTIOfy 

In this paper we are concerned with the summation of a number of series. They are 
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where p = 1, 2, 3, 
Certain of the above series have been extensively discussed in the past Results for particular values of/7 are given 

by Ramanujan in [ 4 ] , while Phillips, Sandham and Watson in [3, 5, 6] have determined, by varying methods, sums 
for general p. The last series of the group, however, seems to have received less attention. It differs from the others 
in that it contains the inverse powers of 4p + /. Further, it is cioselv related to the Riemann Zeta function $(4p + 1). 
As this paper shows, the sums of the series, where they are not identically zero, satisfy recursive relations containing 
binomial coefficients. 

Thus if we write 

T4p-1 
(~1)p(4p)! y (-1)r 

^4P-122p-2 f - r 4 P - / g i n h n r 

then 

t ( V p
2 ) V / " / n=1,2, 

P=1 

The recursive relations are themselves of interest and can be inverted. Their inversion, which leads to the sums of the 
various series, involves the Bernoulli and the lesser known Euler numbers. 

All results are obtained by considering the Neumann problem for the rectangle. Although this problem is of an ele-
mentary nature and is in fact discussed in both contemporary and established literature on Laplace's equation, a com-
plete solution to it does not seem to be available. Kantorovich and Krylov in [2] proposed a method of solution but 
the suggested method contains, as we shall show, an error of principle. Once this error is removed the method can be 
applied to solve the problem. Initially, therefore, we state and solve the Neumann problem for the rectangle and then 
subsequently in Section 3 make appropriate use of the solution to obtain the various results. 
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2. THE NEUMANN PROBLEM FOR THE RECTANGLE 
This problem requires the determination of a function </>(x,yJ satisfying 

(2.1) ^xx + <t>yy - 0 for 0 < x < a, 0 < y < h 

(2.2) <t>y(x,0) = f(x), <j)y(x,b) = g(x) for O < x < a 

(2.3) 4>x(0,yJ = F(y), <px(a,y) = G(y) for 0 < y < b, 

where fix), g(x), F(y) and G(y) are known functions and the subscripts* and y are used to denote partial differentiation. 
It is necessary for a solution that 

(2.4) f |& ds = 0, 
c 

where c is the boundary of the rectangle, d/dn denotes differentiation with respect to the outward normal to c and s 
refers to arc length. The condition (2.4) is equivalent to 

a b 
(2.5) f (f-g)dx+ f (F-G)dy = 0. 

0 0 

We now briefly describe the method used by Kantorovich and Krylov in [2]. We put $ = U + V, where U and V are 
functionsofxandy. We choose the function U so that it satisfies (2.1)# (2.2) and Ux(0,y)= Ux(a,y) = £7 for 0<y < 
b, while Vsatisfies (2.1), (2.3) and Vy(x,0) = Vy(x,b) = OforO<x<a. 

Thus, the original Neumann problem is replaced by two other Neumann problems, one for U and the other for V. 
It is evident that if we can find U and V we shall fulfill the conditions imposed on 0 by (2.1) to (2.3). By virtue of 
(2.4) the existence of U requires 

a 
f (f-g)dx = 0. 

0 
Likewise, the existence of V requires 

b 
f (F-G)dy = 0. 
o 

However, given functions £& Fand £ satisfying (2.5), it does not necessarily follow that the integrals 
a b 

f(f-g)dx and f(F-G)dy 
0 0 

are each zero, and therefore the functions U and V may not exist. Yet the difficulty is readily overcome. We write 
0 = A(x2-y2) + U+K 

where A is some constant to be found, while the functions (/and V each satisfy (2.1) and the further conditions: 
Ux{0.y) = Ux(a,y) - Vy(x,0) - Vy(x,b) - O 

Uy(x,0) = f(x), Uy(x,b) = g(x)+2Av for O < x < a 

Vx(0,y) = F(y), Vx(a,y) = G(y)-2Aa for 0 < y < b. 

Using (2.4) we require for the existence of U and V 

a a 
f | g(x) + 2Ab - fix) \dx = 0, i.e., 2abA = f (f-g)dx 

0 0 

and 
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f { G(y)-2Aa - F(y) } dy = 0 or 2abA = f (G - F)dy. 
0 0 

Equation (2.5) shows that these two expressions for A are consistent Having found A, we can now follow the pro-
cedure given in [2] to determine U and V. In fact, it can be verified directly that to within an arbitrary constant <£ 
is given by 

\gr cosh 3K = fr cosh QL (b -y) \ 
(2.6) 0 = A(x* -y2) + 1/2fQy + 1/2F0x + V —* = —± 1 cos 

r^ nrslnh ^ a 
r a 

°° b i£?rcosh ^ ~Frcosh 2E fe-xjA 
+ V - 1 - ^ — Jt i c o s ^ f , 

% nrsinh G5 * 
b 

where r"r, #r fr = 0, 1, 2, •••) are the Fourier cosine coefficients for f(x) and #W, respectively, over the range 0 < x < 
a and Fr, Gr (r= 0, 1, 2, •••) are the Fourier cosine coefficients of F(y) and G(y) over 0 <y <b. 

3. APPLICATION OF THE SOLUTION TO THE NEUMANN PROBLEM 
We puta = i& = 7rand define functions (p(x,y,4n), where n= 1,2,3, -., by 

(3.1) 2$(x,y,4n) = (x + /y)4n + (x- iy)4n. 
It is readily verified that these functions satisfy (2.1). Further, using (2.2) and (2.3), we deduce for them that f(x) 
and Fly) are both identically zero. In addition 

glx) = 2n { fr+ix)4n'1 + fr- ix)4n~f} and G(y) = 2n \ fr+iy)4n'1 + fr-iy)4n~1} . 
Thus, the Fourier coefficients fr and />are all zero, while gr = Gr = lr(n) (r= 1,2, —), where 

(3.2) lr(n) = Re4-^ f [fr+ix)4n'1-t fr- ix)4n'1]eirxdx 
0 

using the result 
a 

2abA = f (f-g)dx 

o 

we find that the constants vanishes and hence with the help of (2.6) we can write 

(3.3) 4>(x,yAn) = < * „ + £ !,(„} )cosh/y cos^cosh/x cos/zl 

the C4n (n = 1, 2, • •) being constants which have yet to be determined. Successive integration by parts of (3.2) leads 
to the result 

(3.4) lr{n) = ( = ^ 7r4n'322n(4n)(4n -1) + % (4n - 1)(4n - 2)(4n - 3)1 Jin - 1) . 
:: r2 t4 

In particular 

so that putting n= 1 in (3.1) and (3.3) we find 

E t i\r+l \ cos" ry cos rx + cosh rx cos ry § 
(~~V ' "Fl iShnr 

!r(1) = h1)»l 4M 
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Repeated application of (3.4) yields 

(3.6) lrM - (-irl'41 * ̂  * ̂  * aj¥T-\ • 
[ r2 r6 r10

 r4n-2 J 
where, for example, 
(3.7) a2(n) = (-1)n7T4n~322n4n(4n - / ; 
and more generally 
(3.8) a4p.2<n) = {-ir*+i*4n-4p+122n-2p+2(4p-2)! [4p

4n_2 ) , P =.1,2, - , n. 

Using this last result, it follows 
a4p+2(n +U s (4n+4)(4n +3)(4n+2)(4n + 1)a4p-2(n) 

and hence from (3.6) that 

(3.9) fan +4)(4n + 3)(4n+2)(4n + 1) ^ = lr(n + i) + (~1)*1 a2(n + 1) . 

We now proceed to find the constants C4n occurring in (3.3). We integrate Eq. (3.3) twice with respect to x and twice 
with respect to y. These integrations will introduce arbitrary functions of x and y. We have, therefore, 

JihTl^&ilim*4l ^n(y^an(y)+yPnM+qnM 

= c
 x2V2 _ V * / (n) I cosh ry cos rx + cosh rx cos ry f . 
4n 4 Ld r rs sinh m 

r=1 

wherepn(x), qn(x), Pn(y) and Qn(y) are arbitrary functions which may depend on n. Noting the result contained in 
(3.9) we can write this equation in the alternative form 

<j>(x,y,4n+4) = T l Ir(„ + 1) + (=1^1 ^ (n + ; A t cosh V c p i / * * cosh rx cos / y ] 
r=1 ^ J 

+ (4n + 1)(4n+2)(4n+3)(4n+4) J xPn(y) + Qn(y) + yPn (x) + qn (x)- c4n ^ f \ -

This reduces with the help of (3.3) and (3.5) to 

0 = -c4n+4 + ̂ p - (** - Bx*y2 +y*-cj 

+ (4n + 1){4n+2M4n+3)(4n + 4) <xPn(y) +Qn(y) + ypn(x) + qn(x)-c4n
 x-^f-\ . 

This is an identity. Hence equating to zero the coefficient of x2y2 we deduce with the aid of (3.7) 
/ 1 \n~An 02n 

(3-10) *» - 0ijkhr • 
Thus we have 
(3.11) (x+iy)4n + (x-iy)4n = 2c4n + 2 V lr(n) l£0.sh ry cos rx ^cosJLaf^o»f lJ 

*-* rsinhnr 
r=l 

where c4n is given by (3.10) and lr(n) by results (3.6) and (3.8). Putting* = y = 0in (3.11) and simplifying we obtain 

(4n + 1)(4n + 2) ^ r s i n h n r | Z * 7t4p-i22p-2r4p-2 I ' *' ' 
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Thus if we write 
oo 

•1)r 

, P = 1,2, -
sinh m 

(3.12) T4P.1 = (-7)P(4p,! T ~ L 

then it follows T4P-i satisfies the recursive relation 

(us) /= £ (4»4;2| Upi n = lz..._ 

This is the first of our results. We now show how this recursive relation can be inverted to give F ^ / in terms of the 
Bernoulli numbers. To do this, we observe that (3.13) can be put in the alternative form 

T 
1 _ T~"% '4p-1 

(4n+2)l 2-J (4p)!(4n+2~4p)! 

Multiplying both sides of this equation by x and summing from n = 1 to <*> yields 

1J (4n+2)l " 2-r LJ (4p)!(4n+2-4p)! ) ^ (4p)l [ ) £ i (4k + 2)! 

After some manipulation we obtain 

°° A 
(3.14) V 1 UD-1 77-iT = 7 - —r-^~ = 1+ ^cosechcurcosech/cur, 

^ w ^ f4/?// cosh x - cos x 2 
P=1 

where 2a = 1 + i. 
Using the expansion of cosechx given in [1] Eq. (3.15) leads after some simplification to 

T«~' ' ^ Z (-'ft**-'- D(24p-2c>-1 - D ( J ) BqB2p.q . 
2 q=0 

It should be noted that BQ is taken as - 1 while the Bernoulli numbers are defined here by 

?V-j' i>""'*&-
e —/ p=i 

With the help of (3.12) we deduce 

In a similar manner if we pu t * = y = 7rin (3.11) and define S4p~t by 

oo 

S4p-1 = (-1)P~1*1-4p2-2p+2(4p)! Y ^-^ 
" Ap-1 

then 
n 

(3.16) £ [*£2)s4p-t-'*>(*!>+3) 
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S4P~i can also be expressed in terms of the Bernoulli numbers. By writing (3.16) in the form 

V S4p~1 = I / —L l—\ 
L* (4n -4p + 2)!(4p)! 2 \ (4n)! (4n + 2)! \ 

and following a procedure similar to that for T^p-/ we find 

J ^ x4p 2 
> S4P-i * ,/ = - y - coth ax coth lax - /. 

Since (see [1]! 

we have 

giving 

2p 
xz*xhx= £ r - / / * V * jf^ 

p=0 

«p-i-**f: <-vp+q {%) *qB2P~q 
q=0 

n\i\ V c o t h nr = P4p-2_4p-1 TT* (-Dq+ Bg%2p-g 
[ } JL, 4f>-1 Z * jLi (2q)!(4p-2q)! ' 

r=1 i q=Q 

We next put x = 0, y = -n in (3.11) and subtract from twice the result the expressions obtained by putting* = y = 0 
and x = y = n. This leads to 

(3.18) ^"U + l-n^h2"-1] =T2l2r+l(n) —±- • 
U (2r+V4p-1 

Writing 

(3.19) Q4p. , = (- If V 4 p * 12-2p+4(4p)! V - " J * 
% <2r+1)4p-1 

(3.18) gives with the aid of (3.6) and (3.19) 
n 

(3.20) £ (4n4p2) Q*P-1 = (4» + U(4n+2) { 1 + (~1)nH
2
1'2n] . 

This is the third of the recursive relations and may be compared directly in form with (3.13) and (3.16). &4P-i can 
also be expressed in terms of the Bernoulli numbers. 

From (3.20) we deduce 

±\»»r»>~\&-\t^&\\±&& 
n=1 {p=1 ) (k=0 ) 

or, after some manipulation, 

(4p)! coshx- cos* 

where as before 2a - 1 + i. 

E n *4p - „ 2 1 cosh x + cos x - 2 cosh ax - 2 cos ax + 2\ 
4p~1 WW " * TZ^Z—TZrz * 
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The right-hand side of (3.21) can be expressed as 

•y ( coth y- coth l-~- -2 coth ax coth fax - 2 cosec ax cosech fax - tanh ^ tanh '^- i . 

Recalling the expansions for coth x, cosech x already used and noting that in [1] for tanhx we obtain after some 
manipulation 

nA , = (-IPfail V> / ,,<? (24P-2«- 1)(22«- 1) B g Q4P-1 ^.s 2 - , '-11 (2g)!(4p-2g)l B"B*"> 

and hence by (3.19) 

(3 a , f ^(2r+1>l ^ 2T1 (24p-2q _ 1)(22q _ 1} 

The expression in (3.11) can be differentiated as many times as we wish with respect t o * and y at points within the 
rectangle. 

Differentiating once with respect to x and once with respect to y gives 
oo 

(3.23) (2n)(4n - 1)i[(x + iy)4n~2 - (x - iy)4n"2] = Y* ^P^-1 /sinh ry sin rx + sinh rx sin ry] 
" sinh m 
r=1 

Puttings = y = n/2 in (3.23) and defining /?4P„3 by 

(3.24) R4p.3 = / - f " . fa ~ 2)1 E S ^ " T 
n4p-322p-1 ~0 (2r+ D4"-3 cosh ̂  +1)f 

yields 

(3.25) '^^--EUAK-* 
The quantities /?4P-j can be expressed in terms of the Euler numbers (see [1]). 

Following a procedure similar to earlier ones, we can deduce from (3.25) that 

Since 

X>„ + , ^ r , -jr-ef "* 2 X4* 
lp+1 (4p+2U ' 

sec* 
oo 

= E 
q=0 

1 
* 2" 

^ 

-secM 

x2« 
(2q)l ' 

where Elf E2, —, are the Euler numbers and E0 is taken as unity, we obtain 

(3.26) R4p+1 - (4P ,2), £ £ E M,« ^ ^ 7 
and hence 
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00 2p n 

/o97v V (-W „4p+U-4p~3 X^ (-1rEqE2p-q n - n 1 9 
(3-27) S ^ / ^ W ^ / , ? * ' h <*»«!-»!>' p' °'l2' 2 
Putting /? = / i n (3.23) yields 

(3.28) xy = 2ft 2^ ™ ~ — | sinh ry sin rx + sinh rx sin ry I (~1)r 

i 

Hence differentiating once with respect t o * and then y we have, on putt ing* = y = n/2 

~ tr+f 

'-"ES; A / - / / 
sinh m 

If we differentiate (3.28) (2p + 1) times with respect to x and (2p + 1) times with respect to y then f o r * -y = it/ 2 
we find 

± J ^ l l = O t P=1,2,.... 
*-^ smh nr 
r=/ 

Likewise differentiating (3.28) (2p) times with respect to x and 2p times with respect to y leads to 

f " (2r+1)4p~1(-1)r 

% cosb(2r+1)Z =0< P= 7<2<~" 

We now proceed to find the sum of the last of the series referred to in the Introduction. Using the results of Section 
2, it can be shown for n = 1, 2, • 

- I (x + iy)4n+2 + (x- iy)4n+2 \ = (- 7)n<n4n22n(x2 -y2) + Y" (-1)r ^ o s h ^ cos ry - cosh ry cos rx ! 
2 % > *-*> r sinh nr 

r=1 

o=1 r ) 

X J % i-i>"+1-P i d H ^ l 92n-2p+2,AnU (4n+2\\ 

P=1 

The constant appearing in the Neumann solution is determined here to be zero by observing that each side of (3.29) 
vanishes when x = y = 0. 

Putting* = 7r , / = 0 in (3.29) and de f in ing#4^ / by 

(3.30) M4p+1 = (-1)p+1^4p"12'2p+2(4p)! £ / * M / * coshr^ p s , z . 
leads to "1 r p H sinh nr 

(3.3D J2 M*p+i {4n4p2) = i + (-vnHr2n> 
P=1 

From the recurrence relation (3.31) we deduce 

\ T * M
 x p - 1 J. i ™+ a* +*n fax i + „ „ ax nn+ /'ax 

2-r M*P+I J4$T ~ 1 2 T x T ~Jm Y T~ 
P=I 

and hence 
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22p-2 »++, - (-if -gg E h1)S (2mP
2-2S~+2), B°B2^-° 

Since 
00 / -,r*/ u * °° ( coth^-2""4pcoth2ttr ) y ^ f-/A # cosh HT* / - -V1 } 2 f 

~i r**'sinhnr ~ %1 } &+1 \ 

we can, noting (3.30), obtain the required sum. It also follows for/7 > 3 we can obtain a good approximation to 

- cothJJ 
Za 4p+1 

in terms of the Bernoulli numbers. 
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