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1. LetZ, denote the set % 1,2,-,n } Let §fn,k) denote the number of partitions of Z,, into & non-empty
subsets By, -+, By. The By are called b/ocks of the partition, Put

n; = |8l (f =12, k)
so that
(1.1 ny+no++ne = n

Itis convenient to introduce a slightly different notation. Put

(1.2) n=kyl+kg2+-+kpen,
where

ki > 0 =12 n)
and
(1.3) . kytkot +k, = k.

We call {1.2) a number partition of the integer n,; the condition (1.3) indicates that the partition is into k& parts,
~ not necessarily distinct. For brevity (1.2) is often written in the form

(1.4) n=1K152 k|
Corresponding to the partition (1.2) we have
n! 1
(107 (21)%2 ... qapkn KT K2! k!

{1.5)

set partitions. Hence

(1.6) Stnk) = 3 ! !

(1K1 (20)%2 .. (ry¥n K1l k2! Kn!

where the summation is over all nonnegative k7, ko, -+, kj, satisfying (1.2) and (1.13), Thus

O St - )" (3

n!
k=0 ki, k,, =0

kI kT

) Ky gk ks

™

3
]
S

and we get the well known formula

w e .
(1.7) > ) Sk i K = explzte® - 1)).
n=0 k=0 )
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It is clear from (1.7) that

n
(1.8) T Stk X = /g (e* — 1)k,
n=0
which implies
k .
(1.9) Stn k) =L 32 (1) ( j‘) ",
"'
the familiar formula for a Stirling number of the second kind.
Next put
n
(1.10) Anlz) = Y Sinklek
k=0
and in particular
n
(1.11) An = Anll) = 3 Slnk).
k=0

The polynomial A,(z) is called a single-variable Bell polynomial. The number A,, is evidently the total number
of set partitions of Z, . :
From (1.7) and (1.10) we have
(1.12) Y Anle) X = explzte” - 1)),
oD n
Differentiation with respect to x gives

=

(1.13) Anstlz) = 2 2 (f) Alz)
r=0

while differentiation with respect to z gives
n—1

(1.14) Anlz) = 33 (’:) Arlz).
r=0

Hence

(1.15) An+1(z) = 2An(2) + 2AL(2).

By (1.10), (1.15) is equivalent to the familiar recurrence
Stn+1,k) = Sn, k— 1)+ kS(n, k).
If we take z = 7in (1.13) we get

n
(1.16) Apt1 = 2 (']) A, (Ag = 1)
r=0
This recurrence can be proved directly in the following way. Consider a partition of Z,,+7 into k« blocks By, B>,
-+, Bg. Assume that the elementn + 7 is in Bg and let By contain r additional elements, r > 0. Keeping these r
elements fixed it is clear that By, -, Bx_7 furnishes a partition of Z,,_, into k — 7 bivcks. Since the r elements

in By can be chosen in ('r’) ways we get
n n

Ap+1 = E (’,7) Ap-r = Z (,,I)Ar-

r=0 r=0
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For a detailed discussion of the numbers A, see [5]. The polynomial A, (z) is discussed in [1].
We now define (compare [4, Ch. 4])

(1.17) Sink) = n! !
1k 2 151552 pkn Kilkalknl

where again the summation is over all nonnegative k4, ko, k, satisfying (1.2) and (1.3). This definition should
be compared with (1.6). It follows from (1.17) that

° n by k k
x" k _ : 1 (xz\ "1 1 o x%\ "2
n=0 k=0 k. ky,=0
3
:exp(xz+xzz+x—3—z+ )
1
= log ——
exp (z 0y = ) ,
so that
o n ,
(1.18) >3 Silnk) ’\;7—!2/( = (1-x)Z.
n=0 k=0
It follows that
n
(1.19) S Siln kX = 2z + 1)z +n-1),
k=0
and therefore S7(n,k) is a Stirling number of the first kind.
We may restate (1.17) in the following way. Let
(1.20) By, B2, -+, Bk
denote a typical partition of Z, into & blocks with n; = |B|;. Then
(1.21) Si(nk) = (ng—1ng— 1) (ng — 1)1,
where the summation is over all partitions (1.20) such that
nytng+--FtnE =n.
2. We again consider the number partition
(2.1) n = kyltko2++kpn (k1 +-tkn = k).
This may be replaced by
(2.2) n=ny+tna+--+ng,
where
(23) ny = np = = = Ng.

If there are no other conditions the partition is said to be unrestricted. We may, on the other hand, assume that
(2.4) ny > np > = > ng,

in which case we speak of partitions into unequal parts. Alternatively we may assume that in (2.2) the parts nj
are odd. If gfn) denotes the number of partitions into distinct parts and r(n) the number of partitions into odd

parts, it is well known that [3, Ch. 19]
(2.5) gln) = rin).

This discussion suggests the following two problems for set partitions.
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1. Determine the number of set partitions into & blocks of unequal length.

2. Determine the number of set partitions into & blocks, the number of elements in each block being odd.

We shall first discuss Problem 2. The results are similar to those of § 1 above. Let U(n, k) denote the number
of set partitions of Z, into k blocks

(2.6) 811 821 tty Bk

with

(2.7 nj = \Bj| =1 (mod 2) G =12, k.

In addition we define V/(n,k) as the number of set partitions of Z, into k blocks (2.6) with
(2.8) nj = |Bj| =0 (mod 2) (=12 k).

(In the case of number partitions, the number of partitions

n=ngtnpt-+tng,
where
ny =ng = - > ng, nj = 0 (mod 2),

is of course equal to the number of unrestricted partitions of n/2.)
Exactly as in (1.6) we have
) = n!
(2.9) Ulnk) = 3 e
(1) '(31)

where the summation is over all nonnegative k7, k2, ---such that
{ n=kyl+ko3+kz-5+-

k = ki+hkotkzt

7
ko kil ko! -

(2.10)

Similarly we have

(2.11) Vinkl = 3 n! !

kil kol - '
(20 T anyk2 K1t k2
where now the summation is over all nonnegative &, ko, --- such that
(2-12) {n = k1'2+k204'ﬁk3-6‘+...
?\ =k7+k2+/(3+...

It follows from (2.9) and (2.10) that

= n = ki 3\ k2
x” Kk o_ 1 (xz) 1 (xz
XX Uk = 3 kil (7!) kol (3/ )
n=0 k=0 kK, =0
3 5
= X X
_gxp{z()(-fﬁ'ﬁﬁ‘f' )},
so that
o n "
(2.13) Z E Uln,k) % 2% = exp (z sinh xJ.
n=0 k=0 ’
The corresponding generating function for V(n,k) is
(2.14) > 2 Vink) )57—, zK = exp (z (coshx — 1)).
n=0 k=0 i

It is evident from the definitions that
Ulnk) =0 (n=k+1 (mod2)) Vink) = 0 (n =1 (mod?2))
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Corresponding to the polynomial A, (z) and the number A, we define

n
Unlz) = 3 Ulnk)z¥

k=0
(2.15) n
Up = Upl1) = 3 Ulnk)
k=0
and
n
Vplz) = 3 Vin, k)z*
k=0
(2.16)

n
Vo = V(1) = 2 Vink).
k=0

KKY |

Clearly Uy, is the total number of set partitions satisfying (2.6) and (2.7), while V/, is the total number of set

partitions satisfying (2.6) and (2.8).
By (2.13) and (2.15) we have

= n
(2.17) Z Uplz) ;;il_ = exp (z sinh x)
n=0
and by (2.14) and (2.15)

= n
x"
(2.18) 2 Vnlz) o7 T exp (z fcoshx — 1)).
=0

Differentiating (2.17) with respect to x we get

n
E Up+1(2) :7 = z cosh x exp (z sinh x).
n=0 )
This implies
(2.19) Upitlz) =z 2 (2';) Up-2rl2).
2r<n
Differentiation of (2.17) with respect to z gives
i VD .
Uplz) 7 sinh x exp (z sinh x)
n=0
so that
(2.20) Uplz) = 22 ( 1 ) Un-2r-1(2).
2r<n
Put F(x,z) = exp (z sinh x). Since

92 .
aTZF(X,ZI = sinh? xF(x,z),

a2

= Flx,z) = 9 (7 coshx)F(xz) = (22 cosh® x +z sinh x)F(x,z),
ax ox



332 SET PARTITIONS

it follows that . )
_a_2 Flx,z) = z>F(x,z) + z a% Fix,z) + z* %2— Flx,z).

This implies
(2.21) Upialz) = 22U (z) +2U5 (z) +22U5(z) = 22U (2) + (20,)2Up(2)
and therefore
(2.22) Uln +2, k) = Uln, k- 2) +k2U(n,k).
This splits into the following pair of recurrences
(2.23) { Ul2n +2 2k) = U(2n, 2k - 2) + 4k2U(2n, 2k)
' Ul2n+1,2k+1) = Ul2n— 1, 2k— 1)+ (2k + 1)2U(2n — 1, 2k + 1).

To get explicit formulas for U(n, k) we return to (2.13). We have

exp (z sinhx) = E {/2’ Z /2/2) Z (- 7)k< ) (k-2j)x

=

n

n .
/=0

n

nl

n=0 " k=0
which yields
k
(2.24) Ukl = =L 3 1)k(jf)(k-2j)".
k1 i

Similarly, since cosh x — 7 = 2sinh? %x,

exp (z (cosh x — 1)) = exp (2sinh? Jx) = Z (2/2) (7% — g7%%)%¢

k=0
w K
K ) 4
= Q_//(ZIL 3 (1) (fk) o k=ilx
k=0 ©j=0
— 5 Xn (2/2} 2 ( 7)/ (2/() (k )n
B nl k! Z /
n=0 2k<n j=
we get
2k
(2.25) Vink) = =L % (—1)/( ) (k—j)" .
2*k1 1o
Comparing (2.25) with (2.24), we get
(2.26) V(Zn, k) = -EHLZ-/’:-/L U(2n, 2k).
22Ky
Thus the first of (2.23) gives
(2.27) V(2n+2, k) = (2k — 1)V(2n, k - 1) +k2V(2n, k).
If we put
(2.28) Vizn, k) = 12Ky 1),
2k k!

(2.27) becomes

[NOV.
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(2.29) Vin+1,k) = Vin, k= 1) +k2V'(n, k).
Returning to (2.18) we have

il n
> Vprrlz) ,)'(—, = z sinh x exp {z {cosh x — 1)),
n=0 )
. This implies

2.30) Vas1lz) =2 3 (2,1,> Vn-2r-1(2) .
2r<n

Differentiation of (2.18) with respect to z gives

- n
Z Vatz) ;7(/— = (coshx — 7)exp (z cash x — 1)
=0 :

which implies
{2.31) Vhiz) = Z ( 2”,,) Vin-2/12).
0<r<2n
Itis evident from (2.15) and (2.19) that
(2.32) Uni1 = 3 (2';) Upozy -
2r<n
Similarly from (2.30) and (2.16) we have
(2.33) Vars = 2 (5% 1) Vaezrr-
2r<n

Since V,, = O unless n is even, we may replace {2.33) by

n
(2.34) Vonsz = 22 (g';: ! ) Van-2r -
=0
it is easy to prove (2.32) and (2.34) directly by a comhinatorial argument, exactly like the combinatorial proof

of (1.16).
The first few values of U, , Vo, follow.

U, =U, = U2 =1 U,=2 U, =5 Us =12 U, =36
Vo =V,=1 V,=4 VvV, =231 V,=2379.
The following values of Uf2n, 2k), V'{n k), V(2n + 1, 2k + 1) are computed by means of (2.23) and (2.29).

k
1 2 314
n
1 1
U(2n, 2k)
2 4 1
3 16 20 1

4 64 1336 |56 |1
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U(2n+ 7, 2k + 7) 1 1 1

N

10 1

1] 820 966 84 1

Klol1l 21 3]s
n
0 |1

Vin, k) 1 1 1

2 .
3 1|2 w1
4 | 1|85 147 [30] 1

For additional properties of Ufn,k/ see [2].

3. Put
n—1
3.1) Pole) = 3 U2n—1,2k+ 1)2(z% = 12)(22 = 3%) (22 — 12k - 1)).
k=0
Then, by the second of*(2.23),
n—1
22P,(2) = Y Ul2n— 1,2k + 1)2l2% = 120027 = 32) (22 = (2k — 1)2)[2% — (2k+1)7 — (2K + 1)?]
k=0
n
= Y (U020 -1, 2k 1)+ (2k+ 12020 — 1, 2k + 1)]2(2% — 12)(2% - 32) (2% — 2k~ 1)) |
k=0
n
= 3 Uln+1,2k+ )2z = 12)(2%2 - 32) (22 — 2k - 1)?),
n=0
so that

22Pn(z) = Phiqglz).

Since P4(z) = z, it follows that P, (z) = 2271 and (3.1) becomes
n-—-1

(3.2) 221 = S Ufzn - 1, 2k+ Nalz? - 12022 = 32) (2 ~ (26 - 1)2).
k=0

Similarly it follows from the first of (2.23) that

n-1
(3.3) 221 = S Ulzn, 2k)2(22 - 22)(2% — 42) (22 — 2k - 2)2).
k=0
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By (2.26), (2.28) and (3.2) we have also

n—1
(3.4) 2271 = S Vilnklzlz? - 12022 - 32) (22 — (2k - 1)3).
k=0

Formula (1.17) for $;(n, k) suggests the following definitions.

3.5 Uylnk) = ol !
3.5) 1(n k) Z 7k73k25k3 k1!l kol k3! ---

where the summation is over all nonnegative k7, k2, k3, -+, such that
{ n=kyl+ks3+kz5+ -
k:k7+k2+k3+.., ;

(3.6) Vilnk) = nl S A—
! 2 SKigk2gks  Kilkalks!

where the summation is over all nonnegative k7, ko, k3, - such that
{ n = kq2+kod+kz6+-
= ky+kotkzt- .

We observe that U 1 (n,k) is the number of permutations of Z,, with k cycles each of odd length while V' 1(n, k)
is the number of permutations of Z,, with & cycles each of even length.
It follows from (3.5) that

oo n 1,
x" ok [1+x\ %

(3.7) X Uik k- ()
n=0 k=0

Similarly, by (3.6),

(3.8) T X Vilnk XK= (1-x27
n=0 2k<n ’

so that

(3.9) Vilnk) = %’ﬁ S1(n, k).

2°n!
This is also clear if we compare (3.6) with (1.17).
It is easily verified that p 4
2y o [1#x) _7_7‘1)’2
(7 X ) B_X- ( ) z (1- .
If we put

Ugnlz) = Z Uy(n,k)zk

k
it follows from (3.7) that
(3.10) Ut ne1z)—nln =11 p-1(z) = 2U1 n(z) .
This is equivalent to
(3.11) Uitn+1, k) = Uqgln, k—1)+nln—1)U1(n— 1, k).

Notice that this recurrence is somewhat different in form from the familiar recurrence for S7(n, &).

By expanding the right member of (3.7) we get
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(3.12) Upnlz) = nt zn: 2" (”" ’) (”) (n>1).

r—1 r
r=1

To verify directly that (3.12) implies (3.10) we take

zUqplz) = n! é 2" (;’:77) %2(r+ 1) (er’) +2r ( V;z) }

w2 () g (7)) e ()Y

On the other hand

Ut ns1(z)=nln =101 n-1(z) = (n + 1)1 g;l 2" (,37) (Vzrz) —(n— 1! ;Z_,’ 2r (’::72) (V’rz)

o 22 (4 foen (2) —o-0 (223))

r=1
0 d o ) ) )

It is evident from (3.5) that
(3.13) Uslnk) =0 fn = k+1(mod2).

This is also clear from either (3.10) or (3.11).
By means of (3.10) we get

Ui 1(z) =z, Uq2(z) = z2 U1,3(z) = 2z +2%,
Ugqlz) = 82 +2%, Uy 5lz) = 24z +20:% +25.
The number
(3.14) Upn=Usnll) =Y, Uslnk
k

evidently denotes the total number of permutations of Z,, into cycles of odd length. By (3.12) we have
n
(3.15) Upn=nl' 3 2" (ﬁ_—,’) (,/) (> 1).
r=1
Alternatively, by (3.7) and (3.17),

é Ut,n ),(77 B (;ii) S X2 = (1) né (2:> <§) -

which yields
(3.16) Utan = (200t (31} 2727 = (13520~ 1),

(3.17) Uy ones = (20+ 1)1 (Zn") 2727 = (204 W 2p .
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4. To obtain an array orthogonal to U(n,k) we consider the expansion

— * n
@.1) NT#H3 —x)Z = 3 Cole) %5
n=0
If we denote the left member of (4.1) by F, we have

Z_)._F-= __-L F iF_ :( z? — XZ F
ox \/m_z e ax? 1+x? (1 +x*)3/2 )
which gives
4.2) o (1+x2) az—f +x = p2F
ax ox

Substituting from (4.1) in (4.2) we get

Cpio(z) #nln — 1)Cplz) +nCnlz) = 22C,(z),
so that
(4.3) Cpiolz) = (22— n2)Chlz).
Since Cp(z) =1, C1(z) =2z, it follows that
{‘ Conlz) = 22(22 = 22)(z2 = 42) - (2% — (20 — 2)?)
@.4) Consilz) = 2022 = 12022 = 32) (22 — (20 - 1)?).

Therefore (4.1) becomes

(@5 T+ —x)7 = i 2222 - 2%) - 2(,27)2,(27 —2%) 2n
=0 /

(2n + 1)!

> 2022 = 12) (22 = 20 = 1)%) K20+
n=0

If we differentiate both sides of (4.5) with respect to z and then putz = 0, we get

= 2,2 2
T = _ _qgn 12:3% (20 = 1)% | 2n+1
log (/7T +x2—x) Z (—1) o7+ 0 X .
n=0
Thus (4.5) becomes
D gn 1232 (= 1)2 e
(4.6) exp {z 20 (~1) ot 11 X
n=

-y 222222 2% 0
" 2n)!

it 2 .2 2 2
2(z = 1%) (2 = (2n = 1)%) _2n+1
! {v-'b (on + 7)1 X

Now replace x by /ix and z by —/z and we get

337
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=)

2n+1 = 20,2, 92 2 2

202 1y 12 x20 _ 2%z +2%) (22 +(2n = 2)%) _2n

@.7) exp {,Z Z{.} 1%:3% (20 = 1) (2n+l}!} Za (2n)1 X
n= =

- 2,121,222 2 2

C2zZ Nz +3%) (25 + (2n = 1)°) _2n+1

! Z{)} 120+ 1)1 X
n=

We now define W(n, k) by means of

n
22022+ 22)(22 +42) (22 + (2n - 2)?) = Z W(2n, 2k)7 %k

k=0
(@.8) ,
222+ 12)(22 +3%) (22 + 20— 1)%) = 3 WH2n +1, 2k + 1)2K*T

\ k=0
It follows at once from (3.2), (3.3) and (4.8) that

n . n .
4.9) > (=1)"wzn, 2)u(2), 2k) = 3 - 17 utzn, 2)wizj, 2k) = &, k.,

=k j=k
n .

(4.10) > (=1)"TW2n + 1,2+ 1)U(2j + 1, 2k + 1)

j=k

n
=3 (=17 u2n 1,2+ 1DM2+ 1,2k + 1) = Spp
J=k

By means of (4.7) we can exhibit W(n,k) iri a form similar to (2.9) and (2.11). Indeed it is evident from (4.7)
and (4.8) that

= n X"k ” x2nt1
(4.11) > > Wink) 2= exp {z > fln) S }
n=0 k=0 n=0

where for brevity we put
fin) = 12.32.52 (20— 1)2.

It follows from (4.11) that

@.12) Wi i) = ! (1)) (112))" 2(73;/“
(¥ Tz 2syks . Kilkalksl

where the summation is over all nonnegative k¢, k2, k3, --- such that

(4.13) n = ky-1+kp-3+kz-5+-, k=kithkotkzt- .

Moreover, in view of the definition of U(n, k), we have the following combinatorial interpretation of W(n, k)s
Win, k) is the number of weighted number partitions (4.13): to each partition we assign the weight

nl (1)) (720) 2 453))*3 -
/
(¥ zyksyks .. Kitka!ks!

A different interpretation is suggested by (4.8).
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5. We now return to Problem 1 as stated in the beginning of 32.
Let T{n, k) denote the number of set partitions of Z,, into & blocks
By, B2, By

of unequal length. Then it is evident that we have the generating function

- n oo n
=~ X"k _ xz
(5.1) §% §l_, Tink) 2y 2= T (7+ ‘" )
= K
This is equivalent to
» /
(5.2) Ttn k) = —_ntr
(k) Z nylngl-ngl
where the summation is over all n¢, no, -, ng such that
(5.3) n=ng+npt g, ny >nog > > > 0

In other words, 7{n, k) can be thought of as a weighted number partition: to each partition (5.3) we assign the
weight

this weight is of course the number of admissible set partitions corresponding to the given number partition.
We can define a function that includes 7fn, k), Ufn, k), V(n k) as special cases. Let
(5.4) r=Arq,ro,r3, )

be a sequence in which r; is either a nonnegative integer or infinity. Let S(n, k |7/ denote the number of set par-
titions of Z,, into & blocks By, Bp, -, By with the requirement that, for each j, there are at most r; blocks of
length /. Thus, for example, we have

S(n,k) 1= (oo, 00, 00 )
Uln, k) 1=, 00,0 )
(5.5) Stkit) =) vink)  T=1(0 = 0 = )

Tin,k) r=A(1,1,1-)

For an arbitrary sequence {5.4) we have the generating function
o i ik
X Lk 1 (xz
(5.6) T X Stnki) X 2k - .137{ z (/,! ) )
n=0 71 k=0 f

Clearly (5.6) reduces to a known result in each of the cases (5.5).
We shall now obtain some more explicit results for the enumerant 7(n, k). 1tis convenient to define

(5.7) Talz) = 3 TinkizX
k
and
(5.8) Tp = Tol1) = 2 Tink).
k

Then, by (5.1),

S r X (X
(5.9) ;Z() Tofe) 4 = 1 (7 . )

Put
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F = Fixz) =
Then it is easily verified that
(5.10) log Fix,z) =
where
(5.11) Folz) = 22
rs=n

Differentiating (5.10) with respect tox, we get

Fxlxz) _
Fix,z)
This implies the recurrence
n
(512) T,-,+7(Z) = Z
r=0

Differentiating (5.10) with respect to z, we get

Folxz) = oy %"
Flxz) ZI Fatz) nl
=
and therefore
n
(5.13) Thte) = 3 (7) File)Tprlz).
r=1
Written at tength, (5.13) becomes
n
(5.14) > kTlnki* = 3 (7 ) Th—r,j) 3 (~1)77 Lo
k r=71 st=r (1)
This gives
(5.15) kTink) = 3 (=17 (s’;) 6 1y s k—s)
S
0<st<n (t/)
It is obvious that o=t
(5.16) Tin,1) = 1 n=>1).
Using (5.14) we get
— n — n
(5.17) Tin,2) = (2" — 2)— % (n/2> = 8n,2)- % (n/z ) .
If we put
n
(5.18) Grlx) = 2 Tink) 2
- J
and
“
(5.19) Hitx) = x_

. o
Z Fn(Z},;_T ,

n=1

(—1)577 al_ s
s(rl)®

b n
Z Fn-/-](Z) ;7\,“7 .
n=0

(7)) FrorteTaeste).

=1 (1)

[NOV.
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then by (5.14)

(5.20) kGilx) = 25 (=15 THg(x)Grslx).
s=1
Thus for example
Gilx) = Hylx) = eX -1 2IGo(x) = H,fo)—Hglx), 31G3(x) = H‘?/x}—3H7(X)H2/X)+2H3(X)
and so on.
If we take z = 7 in (5.12) we get the recurrence

oo

(5.21) Tot1 = 2, (’,’) FreilT)To-y .
r=0
Unfortunately the numbers

Fol1) = 3 (=177 2L

s(r1)®
rs=n
are not simple. We note that
o ., - e
(5.22) Y AE - T B p.
n=1 i s=1
Analogous to (5.2) we may define
(5.23) Tink) = 5 —2L

ning -k ’
where again the summation is over all n, no, -+, ny such that
n=nyg+ng+--+ny, ny >np > >ng > 0.

Then T7(n, k) denotes the number of permutations of Z,, with & cycles of unequal length. From (5.23) we ob-
tain the generating function

= x" k. 0§ x"z
(5.24) INDIRTE ] (7+_> ,
n=0 k n
As above we define

Tinlz) = 25 Tilnk)Z%, Tin = Tinll) = 2o Tylnk).
k k

We can obtain recurrences for 77 (n,k) and Ty , similar to those for 7(n,k) and T,. In particular we have
n
(5.25) Tin+1 = Z (7) Fre1(0T 1,01 .
r=0
where
Fiall) = 25 (=1)57 l’is .

rs=n sr

We remark that 77 ,, is the total number of permutations of Z, with cycles of unequal length. Note that

oy n had n
(5.26) S .- <,+X_).
" n! n=1 n
n=1
Finally, asin (5.4), let
(5.27) r=Arq,r3,r3 )
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be a sequence in which each r; is either a nonnegative integer or infinity. LetS(n,k}r) denote the number of
permutations 7 in Z,, with the requirement that, for each /, the number of cycles of length / in 7 is at most ;.
Then

Sq(nk) r= (o, =, 00, w0
Y Uqln,k) r= (00,0 )
S](ﬂ,kl[) = V1(I7,k} f: (0, 00’0’00, )
T1(n,k) r=1(1,11-).

For an arbitrary sequence (5.27) we have the generating function
- n 7 J k
X"k _ o 1 [x/z
n=0 k / k=0
The following question is of some interest. For what sequences (5.27) will the orthogonality relations

n
(5.29) > (~1)"Is1(nj\0)S ki)
=k

n
= 3 =1 f10S 10,K1r) = Sk
=k
be satisfied?
Alternatively we may ask for what pairs of sequences 7, s will the orthogonality relations

n n
(5.30) > (=1"TS 1S kIs) = Y (~1)7KS(njls)S 1,kIr) = 84k
j=k J=k
be satisfied?
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