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[Continued from page 391.] 

Let qb denote one of thep/ and P denote qb~2(q- I)2, Now, 

(3) qb-2(q - 1)2 = qb~1(q -2 + 1/q). 

From (3), it can be seen that/3 > /, for all q, and that/3 > 8, for all q> 11. Furthermore, for# < 11, the fol-
lowing table can be obtained, by checking the right side of (3) for the case b = 1, and the left side of (3) for the 
case b> 2. 

Prime? 3 3 5 5 7 7 
Exponent/? 2 3 1 2 1 2 
P greater than 4 8 2 8 4 8 

or equal to 
Hence, (2) holds for /7- 1 possibly equal to 2-3, 2-32, 2-5, 2-7, 2-3.5, 2-3.7 fa = 1); 4-3, 4-5, 4-3-5 fa = 2); 

or 8-3 (a = 3); and (2) fails to hold for all other choices. These combinations lead to the primes 7, 11, 13, 19, 
31,43,61. 

Theorem 3. If p is a prime greater than 5, then the primitive roots are not consecutive. 

Proof. For the primes excluded in the Lemma, the primitive roots are: for 7 - 3 , 5; for 11 - 2, 6, 7, 8; 
for 1 3 - 2, 6,7, 11; for 19 - 2, 3, 10, 13, 14, 15; for 31 - 3, 11, 12, 13, 17, 21, 22, 24; for 43 - 3, 5, 12, 18, 
19, 20, 26, 28, 29, 30, 33, 34; for 61 - 2, 6, 7, 10, 17, 18, 26, 30, 31, 35, 43, 44, 51, 54, 55, 59. None of these 
primes have consecutive primitive roots. 

Now, let p denote a prime for which the Lemma applies and suppose that k is a positive integer for which 
k2 <p- 1. Then, 

k2-(k- I)2 = 2-k- 1 < 2-k < 2sjp-1 < (p(p - 1). 

Therefore, consecutive squares appear within a span less than <p(p - 1). Since squares are quadratic residues, 
and therefore not primitive roots, no string of consecutive primitive roots can be of length <p(p - //Conse-
quently, the primitive roots are not consecutive. 


