$$
M(n, k) / 2^{n-1}=M(n-1, k) / 2^{n-2}+k M(n-2, k) / 2^{n-3}
$$

As $M(1, k)=1$ and $M(2, k)=2$ one can use induction to prove that $M(n, k)$ is divisible by 2^{n-1}.
Also solved by David G. Beverage, Wray G. Brady, Paul S. Bruckman, Herta T. Freitag, David Zeitlin, and the Proposer.

OPERATION AL IDENTITY

B-339 Proposed by Gregory Wu/czyn, Bucknell University, Lewisburg, Pennsy/vania.
Establish the validity of E . Cesàro's symbolic Fibonacci-Lucas identity $(2 u+1)^{n}=u^{3 n}$; after the binomial expansion has been performed, the powers of u are used as either Fibonacci or Lucas subscripts. (For example, when $n=2$ one has both $4 F_{2}+4 F_{1}+F_{0}=F_{6}$ and $4 L_{2}+4 L_{1}+L_{0}=L_{6}$.)
Solution by Graham Lord, Universitế Laval, Québec, Canada.
For a fixed K, since both

$$
F_{K} a+F_{K-1}=a^{k} \quad \text { and } \quad F_{K} b+F_{K-1}=b^{K}
$$

the $n{ }^{\text {th }}$ power of each when added (algebraically) will give the result

$$
\left(F_{K} u+F_{K-1}\right)^{n}=u^{K n} .
$$

The desired equation is the special case when $K=3$.
Also solved by David G. Beverage, Wray G. Brady, Paul S. Bruckman, Herta T. Freitag, Ralph Garfield, H. Turner Laquer, A. G. Shannon, David Zeitlin, and the Proposer.
[Continued from page 284.]

Solution by David Beverage, San Diego Community College, San Diego, California.
By using the polynomials $P_{2 n+1}(x)^{*}$ expressed explicitly as

$$
\begin{equation*}
P_{2 n+1}(x)=\sum_{r=0}^{n} 5^{n-r}(-1)^{k r} \frac{(2 n+1)[(2 n-r)!]}{r!(2 n+1-2 r)!} x^{2 n+1-2 r * *} \tag{1}
\end{equation*}
$$

and selecting $m=2 n+1$, obtain

$$
\begin{equation*}
Q=\frac{F_{m p}}{F_{p}}=F_{p} \cdot H \pm m, \tag{2}
\end{equation*}
$$

where H is a polynomial in F_{p}.
Clearly,

$$
\left(F_{p}, m\right) \mid\left(F_{p}, Q\right)
$$

Select $m>1$ with integral coefficients and $m \mid F_{p}(m \not \equiv 0(p))$ in order that $\left(F_{p}, Q\right)>1 \ldots$. The above conditions are satisfied for many numbers m and p. One example: $p=7$ and $m=13$ produces

$$
\frac{F_{91}}{F_{7}}=358465123875040793=0 \quad \text { and } \quad\left(F_{7}, Q\right)=13>1
$$

Many other interesting divisor relationships may be obtained from the polynomials $P_{2 n+1}(x)$.
*David G. Beverage, "A Polynomial Representation of Fibonacci Numbers," The Fibonacci Quarterly, Vol. 9 No. 5 (Dec. 1971)
**David G. Beverage, "Polynomials $P_{2 n+1}(x)$ Satisfy ing $P_{2 n+1}\left(F_{k}\right)=F(2 n+1) k$," The Fibonacci Quarterly, Vol. 14, No. 3 (Oct. 1976), pp. 197-200.

