and
giving

$$
z(N)<C_{\beta} \beta^{N}
$$

$$
N \lim _{\rightarrow \infty} \frac{z(N)}{Z(N)}=0 .
$$

Corollary. On similar lines

$$
\lim _{N \rightarrow \infty} \frac{Z(N)}{C_{N}}=N \lim _{\rightarrow \infty} \frac{z(N)}{C_{N}}=0 .
$$

NOTE. Given a partition of N in terms of 1 and 2, if we rearrange the summands so as to get the maximum number of max we get a Z_{2} composition. If we rearrange to get the maximum number of min we get a Z_{1} composition. Roughly a Zeckendorf composition is either a maximax or a maximin composition.

REFERENCES

1. V. E. Hoggatt, Jr., and Krishnaswami Alladi, "Compositions and Recurrence Relations," The Fibonacci Quarterly, Vol. 13, No. 3.(Oct. 1975), pp. 233-235.
2. V. E. Hoggatt, Jr., and Krishnaswami Alladi, "Limiting Ratios of Convolved Recursive Sequences," The Fibonacci Quarterly, Vol. 15, No. 3 (Oct. 1977), pp. 211-214.

别

A TOPOLOGICAL PROOF OF A WELL KNOWN FACT ABOUT FIBONACCI NUMBERS

ETHAN D. BOLKER
Bryn Mawr College, Bryn Mawr, Pennsylvania

Theorem. Let p be a prime. Then there is a sequence $\left\{m_{j}\right\}$ of positive integers such that

$$
F_{m_{j}} \equiv 1-F_{m_{j}-1} \equiv 1-F_{m_{j}+1} \equiv 0 \quad\left(\bmod p^{j}\right)
$$

The proof depends on the following lemma.
Lemma. Let G be a topological group whose completion (in the natural uniformity) is compact. Let $g \in G$. Then the sequence g, g^{2}, g^{3}, \cdots has a subsequence which converges to 1 .

Proof. The sequence of powers of g has an accumulation point $h=\lim _{j \rightarrow \infty} g^{n_{j}}$ in the compact completion \bar{G} of G. Let $m_{j}=n_{j+1}-n_{j}$. Then $g^{m_{j}} \rightarrow 1$ in \bar{G} and hence in G.
To prove the theorem we shall apply the lemma to

$$
g=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)
$$

in the group G of 2×2 integer matrices of determinant ± 1 topologized p-adically. That is, for every integer n write $n=p^{k} m,(p, m)=1$ and set $\|n\|_{p}=p^{-k}$. Then for $A, B \in G$ let

$$
d(A, B)=\max \left\{\left\|A_{i j}-B_{i j}\right\|_{p}: i, j=1,2\right\}
$$

G equipped with the metric d satisfies the hypotheses of the lemma.
It is easy to check inductively that

$$
g^{m}=\left(\begin{array}{ll}
F_{m+1} & F_{m} \\
F_{m} & F_{m-1}
\end{array}\right) .
$$

[Continued on p. 280.]

