$$
\sum_{k=0}^{4} p(4, k)=816=24.34=24 F_{9}
$$

Similarly

$$
\sum_{k=0}^{4} q(4, k)=1320=24.35=24 F_{10}
$$

It is clear that

$$
\text { (4.6) } \quad p(n, n)=q(n, n)=1 \quad(n=0,1,2, \cdots) .
$$

Taking $k=n-1$ in (4.3) and n in (4.4), we get

(4.7)	
and	
(4.8)	$q(n, n-1)=p(n, n-1)+n \quad(n \geqslant 1)$
($2(n+1, n)=2(n+1)+S(n, n-1)-1$,	

respectively. Since

$$
S(n, n-1)=1 / 2 n(n-1)
$$

it follows that

$$
\left\{\begin{array}{l}
p(n, n-1)=1 / 2 n(n+1) \tag{4.9}\\
q(n, n-1)=1 / 2 n(n+3)=p(n+1, n)-1 .
\end{array}\right.
$$

As for $k=0$, it is evident from (3.4) that
so that

$$
\lim _{u=0} F_{u+n}=F_{n},
$$

(4.10)

$$
p(n, 0)=n!F_{2 n}, \quad q(n, 0)=n!F_{2 n+1} .
$$

It would be of interest to find combinatorial interpretations of $p(n, k)$ and $q(n, k)$.

REFERENCES

1. M. W. Bunder, "On Halsey's Fibonacci Function," The Fibonacci Quarterly, Vol. 13, No. 2 (April 1975), pp. 209-210.
2. E. Halsey, "The Fibonacci Number F_{u} where u is not an Integer," The Fibonacci Quarterly, Vol. 3, No. 2 (April 1965), pp. 147-152.

*

[Continued from p. 245.]
(As a corollary, note that we have proved

$$
\left.F_{m+1} F_{m-1}-F_{m}^{2}=\operatorname{det}\left(g^{m}\right)=(-1)^{m} .\right)
$$

Then the lemma implies there is a sequence $\left\{m_{j}\right\}$ for which

$$
g^{m_{j}} \rightarrow 1=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

in the p-adic topology. Thus we can choose $\left\{m_{j}\right\}$ so that $d\left(1, g^{m_{j}}\right)<p^{-j}$. Then p^{j} divides $F_{m_{j}}$ and $1-F_{m_{j}+1}$, which proves the theorem.
It is clear that one can vary G and g in the argument above to prove a class of theorems related to the well known one quoted.

*

