## ZERO-ONE SEOUENCES AND FIBONACCI NUMBERS

## L. CARLITZ* AND RICHARD SCOVILLE

Duke University, Durham, North Carolina 27706

## 1. INTRODUCTION

It is well known that the number of zero-one sequences of length $n$ :
(1.1)

$$
\left(a_{1}, a_{2}, \cdots, a_{n}\right) \quad\left(a_{i}=0 \text { or } 1\right)
$$

with consecutive ones forbidden is equal to the Fibonacci number $F_{n+2}$. Moreover the number of such sequences with $a_{n}=a_{1}=1$ also forbidden is equal to the Lucas number $L_{n}$. This suggests the following two problems.

1. Let $n_{00}, n_{01}, n_{10}, n_{11}$ be non-negative integers such that

$$
n_{00}+n_{01}+n_{10}+n_{11}=n-1
$$

We seek the number of sequences (1.1) with exactly $n_{00}$ occurrences of $00, n_{01}$ occurrences of $01, n_{10}$ occurrences of 10 and $n_{11}$ occurrences of 11 .
2. Let $n_{00}, n_{01}, n_{10}, n_{11}$ be non-negative integers such that

$$
n_{00}+n_{01}+n_{10}+n_{11}=n .
$$

We again seek the number of sequences (1.1) with $n_{i j}$ occurrences of $i j$, but now $a_{n} a_{1}$ is counted as a consecutive pair.
Let $a\left(n_{00}, n_{01}, n_{10}, n_{11}\right)$ denote the number of solutions of Problem 1 and $b\left(n_{00}, n_{01}, n_{10}, n_{11}\right)$ denote the number of solutions of Problem 2. Put

$$
\begin{aligned}
& f_{n}=f_{n}\left(x_{00}, x_{01}, x_{10}, x_{11}\right)=\sum_{n_{i j}=0}^{\infty} a\left(n_{00}, n_{01}, n_{10}, n_{11}\right) x_{00}^{n_{00}} x_{01}^{n_{01}} x_{10}^{n_{10}} x_{11}^{n_{11}}, \\
& g_{n}=g_{n}\left(x_{00}, x_{01}, x_{10}, x_{11}\right)=\sum_{n_{i j}=0}^{\infty} b\left(n_{00}, n_{01}, n_{10}, n_{11}\right) x_{00}^{n_{00}} x_{01}^{n_{01}} x_{10}^{n_{10}} x_{11}^{n_{11}} .
\end{aligned}
$$

It is convenient to take

$$
f_{0}=g_{0}=0, \quad f_{1}=g_{1}=2 .
$$

Put

$$
F(u)=\sum_{n=0}^{\infty} f_{n} u^{n}, \quad G(u)=\sum_{n=0}^{\infty} g_{n} u^{n}
$$

We show that

$$
\begin{equation*}
F(u)=\frac{2 u+\left(x_{01}+x_{10}-x_{00}-x_{11}\right) u^{2}}{1-\left(x_{00}+x_{11}\right) u+\left(x_{00} x_{11}-x_{01} x_{10}\right) u^{2}} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
2+G(u)=\frac{2-\left(x_{00}+x_{11}\right) u}{1-\left(x_{00}+x_{11}\right) u+\left(x_{00} x_{11}-x_{01} x_{10}\right) u^{2}} . \tag{1.3}
\end{equation*}
$$

*Supported in part by NSF Grant GP-37924X1.

The special case

$$
\begin{equation*}
x_{00}=x_{01}=x_{10}=1 . \quad x_{11}=x \tag{1.4}
\end{equation*}
$$

is of some interest. In this case (1.2) and (1.3) reduce to

$$
\begin{align*}
1+F(u) & =\frac{1+(1-x) u}{1-(1+x) u-(1-x) u^{2}}  \tag{1.5}\\
2+G(u) & =\frac{-2-(1+x) u}{1-(1+x) u-(1-x) u^{2}} \tag{1.6}
\end{align*}
$$

respectively. These generating functions evidently contain the enumeration of zero-one sequences with a given number of occurrences of 11 .
For $x=0,(1.5)$ and (1.6) reduce to the generating functions for $F_{n+2}$ and $L_{n}$, respectively. Thus it is natural to put

$$
\begin{aligned}
& 1+F(u)=\sum_{n=0}^{\infty} f_{n+2}(x) u^{n}, \\
& f_{n}(x)=\sum_{k} F_{n, k} x^{k} \\
& 2+G(u)=\sum_{n=0}^{\infty} g_{n}(x) u^{n},
\end{aligned} g_{n}(x)=\sum_{k} L_{n, k} x^{k} .
$$

We find that $f_{n}(x), g_{n}(x)$ both satisfy

$$
v_{n+2}=(1+x) v_{n+1}+(1-x) v_{n} \text {, }
$$

which implies

$$
F_{n+2, k}=F_{n+1, k}+F_{n, k}+F_{n+1, k-1}-F_{n, k-1}
$$

and similarly for $L_{n, k}$. Moreover there is the striking relation

$$
g_{n}(x)=f_{n+3}(x)-2 f_{n+2}(x)+2 f_{n+1}(x) \quad(n \geqslant 0) .
$$

## 2. PROBLEM 1

In order to enumerate the number of sequences of Problem 1 it is convenient to define

$$
\begin{equation*}
a_{r s}^{i}\left(n_{00}, n_{01}, n_{10}, n_{11}\right) \quad(i=0,1) \tag{2.1}
\end{equation*}
$$

as the number of zero-one sequences with $r$ zeros, $s$ ones, $n_{j k}$ occurrences of $j k$ and ending with $i$, where

$$
n_{00}+n_{01}+n_{10}+n_{11}=r+s-1
$$

Put
(2.2) $f_{i}(r, s)=f_{i}\left(r, s \mid x_{00}, x_{01}, x_{10}, x_{11}\right)=\sum_{r, s} a_{r s}^{i}\left(n_{00}, n_{01}, n_{10}, n_{11}\right) x_{00}^{n_{00}} x_{01}^{n_{01}} x_{10}^{n_{10}} x_{11}^{n_{11}}$.

It is convenient to take

$$
\left\{\begin{array}{lll}
f_{0}(0,0)=0, & f_{0}(1,0)=1, & f_{0}(0,1)=1  \tag{2.3}\\
f_{1}(0,0)=0, & f_{1}(1,0)=0, & f_{1}(0,1)=1 .
\end{array}\right.
$$

Deleting the final element in a given sequence, we obtain the following recurrences:

$$
\left\{\begin{array}{l}
f_{0}(r, s)=x_{00} f_{0}(r-1, s)+x_{10} f_{1}(r-1, s)  \tag{2.4}\\
f_{1}(r, s)=x_{01} f_{0}(r, s-1)+x_{11} f_{1}(r, s-1) \quad(r+s>1) .
\end{array}\right.
$$

Put

$$
\begin{equation*}
F_{i}=F_{i}(u, v)=\sum_{r, s=0}^{\infty} f_{i}(r, s) u^{r} v^{s} \quad(i=0,1) \tag{2.5}
\end{equation*}
$$

Then by the first of (2.4)

$$
F_{0}(u, v)=u f_{0}(1,0)+v f_{0}(0,1)+x_{00} u \sum_{r+s \geqslant 2} u^{r-1} v^{s} f_{0}(r-1, s)+x_{10} v \sum_{r+s \geqslant 2} u^{r-1} v^{s} f_{1}(r-1, s),
$$

so that
(2.6)

$$
F_{0}(u, v)=u+x_{00} u F_{0}(u, v)+x_{10} u F_{1}(u, v) .
$$

Similarly
(2.7)

$$
F_{1}(u, v)=v+x_{01} v F_{0}(u, v)+x_{11} v F_{1}(u, v) .
$$

This pair of formulas can be written compactly in matrix form:
where

$$
\begin{align*}
\binom{F_{0}}{F_{1}} & =\binom{u}{v}+M\binom{F_{0}}{F_{1}},  \tag{2.8}\\
M & =\left(\begin{array}{ll}
x_{00} u & x_{10} u \\
x_{01} v & x_{11} v
\end{array}\right) .
\end{align*}
$$

(2.9)

It follows at once from (2.8) that

$$
\binom{F_{0}}{F_{1}}=(I-M)^{-1}\binom{u}{v} .
$$

Since

$$
(I-M)^{-1}=\frac{I}{D}\left(\begin{array}{lr}
1-x_{11} v & x_{10} u \\
x_{01} v & 1-x_{00} u
\end{array}\right)
$$

where
(2.10)
we get

$$
D=\operatorname{det} M=1-x_{00} u-x_{11} v+\left(x_{00} x_{11}-x_{01} x_{10}\right) u v,
$$

(2.1)

$$
\begin{equation*}
\binom{F_{0}}{F_{1}}=\binom{u+\left(x_{10}-x_{11}\right) u v}{v+\left(x_{01}-x_{00}\right) u v} . \tag{2.11}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left.F(u, v)=F_{0}(u, v)+F_{1}(u, v)=\frac{u+v+\left(x_{01}+x_{10}-x_{00}-x_{11}\right) u v}{1-x_{00} u-x_{11} v+\left(x_{00} x_{11}-x_{01} x_{10}\right)}\right) \tag{2.12}
\end{equation*}
$$

This furnishes a generating function for the enumeration of sequences with a given number of zeros and a given number of ones and $n_{i j}$ occurrences of $i j$.
Finally, taking $u=v$, we get the desired solution of Problem 1 .

$$
\begin{equation*}
F(u)=F(u, u)=\frac{-\frac{2 u+\left(x_{01}+x_{10}-x_{00}-x_{11}\right) u^{2}}{1-\left(x_{00}+x_{11}\right) u+\left(x_{00} x_{11}-x_{01} x_{10}\right) u^{2}} . . . . . ~ . ~}{\text {. }} \tag{2.13}
\end{equation*}
$$

Explicit formulas for

$$
f(r, s)=f_{0}(r, s)+f_{1}(r, s)
$$

can be obtained from (2.12). The extreme right member is equal to

$$
\begin{aligned}
& \frac{u\left(1-x_{11} v\right)+v\left(1-x_{00} u\right)-\left(x_{01}+x_{11}\right) u v}{\left(1-x_{00} u\right)\left(1-x_{11} v\right)-x_{01} x_{10} u v}=\sum_{k=0}^{\infty} \frac{\left(x_{01} x_{10}\right)^{k} u^{k+1} v^{k}}{\left(1-x_{00} u\right)^{k+1}\left(1-x_{11} v\right)^{k}} \\
&+\sum_{k=0}^{\infty} \frac{\left(x_{01} x_{10}\right) x^{k} u^{k} v^{k+1}}{\left(1-x_{00} u\right)^{k}\left(1-x_{11} v\right)^{k+1}}-\left(x_{01}+x_{10}\right) \sum_{k=0}^{\infty} \frac{\left(x_{01} x_{10}\right)^{k} u^{k+1} v^{k+1}}{\left(1-x_{00} u\right)^{k+1}\left(1-x_{11} v\right)^{k+1}}
\end{aligned}
$$

Expanding, we get after some manipulation

$$
\begin{align*}
& f(r, s)=\sum_{k>0}\binom{r-1}{k}\binom{s-1}{k-1}\left(x_{01} x_{10}\right)^{k} x_{00}^{r-k-1} x_{11}^{s-k}+\sum_{k>0}\binom{r-1}{k-1}\binom{s-1}{k}\left(x_{01} x_{10}\right)^{k} x_{00}^{r-k} x_{11}^{s-k-1}  \tag{2.14}\\
& -\left(x_{01}+x_{10}\right) \sum_{k>0}\binom{r-1}{k-1}\binom{s-1}{k-1}\left(x_{01} x_{10}\right)^{k} x_{00}^{r-k-1} x_{11}^{s-k-1} \quad(r>0, s>0, r+s>2) .
\end{align*}
$$

## 3. SPECIAL CASES OF PROBLEM 1

If we take
(3.1)
(2.3) reduces to
(3.2)

For $x=0$ the right-hand side becomes

$$
\frac{1+u}{1-u-u^{2}}=\sum_{n=0}^{\infty} F_{n+2} u^{n}
$$

as anticipated. We now define $F_{n, j}$ by means of

$$
\begin{equation*}
\frac{1+(1-x) u}{1-(1+x) u-(1-x) u^{2}}=\sum_{n=0}^{\infty} f_{n+2}(x) u^{n} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{n}(x)=\sum_{j \geqslant 0} F_{n, j} x^{j} \tag{3.4}
\end{equation*}
$$

It follows from (3.3) that $f_{n}(x)$ satisfies

$$
\begin{equation*}
f_{n+2}(x)=(1+x) f_{n+1}(x)+(1-x) f_{n}(x) \quad(n \geqslant 2) \tag{3.5}
\end{equation*}
$$

together with $f_{2}(x)=1, f_{3}(x)=2$; if we take $f_{1}(x)=1$, then (3.5) holds for $n \geqslant 1$. From (3.5) we get the recurrence
(3.6)

$$
F_{n+2, k}=F_{n+1, k}+F_{n+1, k-1}+F_{n, k}-F_{n, k-1} . \quad(n \geqslant 1) .
$$

The following table is now easily computed.

$F_{n, k}:$| $n$ | $k$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 |  |  |  |  |  |  |  |
| 2 | 1 |  |  |  |  |  |  |  |
| 3 | 2 |  |  |  |  |  |  |  |
| 4 | 3 | 1 |  |  |  |  |  |  |
| 5 | 5 | 2 | 1 |  |  |  |  |  |
| 6 | 8 | 5 | 2 | 1 |  |  |  |  |
| 7 | 13 | 10 | 6 | 2 | 1 |  |  |  |
| 8 | 21 | 20 | 13 | 7 | 2 | 1 |  |  |
| 9 | 34 | 38 | 29 | 16 | 8 | 2 | 1 |  |
| 10 | 55 | 71 | 60 | 39 | 19 | 9 | 2 | 1 |

Note that
(3.7)

$$
f_{n}(1)=\sum_{j \geqslant 0} F_{n, j}=2^{n-2} \quad(n \geqslant 2)
$$

This follows at once by taking $x=1$ in (3.3). If we take $x=-1$ we get

$$
\sum_{n=0}^{\infty} f_{n+2}(-1) u^{n}=\frac{1+2 u}{1-2 u^{2}}
$$

which yields
(3.8)

$$
f_{2 n}(-1)=2^{n-1}, \quad f_{2 n+1}(-1)=2^{n} \quad(n \geqslant 1)
$$

The table suggests

$$
\begin{cases}F_{n, n-3}=1 & (n>3)  \tag{3.9}\\ F_{n, n-4}=2 & (n>4) \\ F_{n, n-5}=n-1 & \\ (n \geqslant 5)\end{cases}
$$

Since

$$
\frac{1+(1-x) u}{1-(1+x) u-(1-x) u^{2}}=\frac{1}{1-u-u^{2}}+\sum_{k=1}^{\infty} \frac{u^{k+1}(1-u)^{k-1} x^{k}}{\left(1-u-u^{2}\right)^{k+1}}
$$

we have also

$$
\begin{equation*}
\sum_{n=k+3}^{\infty} F_{n, k} u^{n}=\frac{u^{k+1}(1-u)^{k-1}}{\left(1-u-u^{2}\right)^{k+1}} \quad(k \geqslant 1) \tag{3.10}
\end{equation*}
$$

Replacing $x$ by $x / u$ in (3.3) we get

$$
\begin{equation*}
\frac{1-x+u}{1-x-(1-x) u-u^{2}}=\sum_{n=0}^{\infty} u^{n} \sum_{k=0}^{\infty} F_{n+k+2, k} x^{k} \tag{3.11}
\end{equation*}
$$

which furnishes a generating function for diagonals, namely

$$
\begin{equation*}
D_{n}(x) \equiv \sum_{k=0}^{\infty} F_{n+k+2, k} x^{k}=\sum_{2 s \leqslant n+1}\binom{n-s+1}{s}(1-x)^{-s} . \tag{3.12}
\end{equation*}
$$

For example

$$
D_{0}(x)=1, \quad D_{1}(x)=1+\frac{1}{1-x}, \quad D_{2}(x)=1+\frac{2}{1-x}, \quad D_{3}(x)=1+\frac{3}{1-x}+\frac{1}{(1-x)^{2}}
$$

in agreement with (3.9). Also,

$$
D_{4}(x)=1+\frac{4}{1-x}+\frac{3}{(1-x)^{2}}, \quad D_{5}(x)=1+\frac{5}{1-x}+\frac{6}{(1-x)^{2}}+\frac{1}{(1-x)^{3}}, \quad \text { etc. }
$$

The special case
(3.10)

$$
x_{00}=x_{10}=x_{11}=1, \quad x_{01}=x
$$

is considerably simpler than (3.1). Using (3.10), (2.13) reduces to

$$
\begin{equation*}
1+F(u)=\frac{1}{1-2 u+(1-x) u^{2}} \tag{3.11}
\end{equation*}
$$

Since

$$
\begin{aligned}
\frac{1}{1-2 u+(1-x) u^{2}}=\frac{1}{(1-u)^{2}-x u^{2}} & =\sum_{k=0}^{\infty} \frac{x^{k} u^{2 k}}{(1-u)^{2 k+2}}=\sum_{k=0}^{\infty} x^{k} u^{2 k} \sum_{j=0}^{\infty}\binom{2 k+k+1}{j} u^{j} \\
& =\sum_{n=0}^{\infty} u^{n} \sum_{2 k \leqslant n}\binom{n+1}{2 k+1} x^{k}
\end{aligned}
$$

so that (3.11) becomes

$$
\begin{equation*}
1+F(u)=\sum_{n=0}^{\infty} u^{n} \sum_{2 k \leqslant n}\binom{n+1}{2 k+1} x^{k} \tag{3.12}
\end{equation*}
$$

It follows from (3.12) that the number of sequences of length $n$ with $k$ occurrences of 01 is equal to the binomial coefficient $\binom{n+1}{2 k+1}$. It is not difficult to give a direct combinatorial proof of this result.

## 4. PROBLEM 2

Let
(4.1) $\quad a_{15}^{i j}\left(n_{00}, n_{01}, n_{10}, n_{11}\right) \quad(i, j=0)$
denote the number of sequences with $r$ zeros and $s$ ones, where $r+s=n_{00}+n_{01}+n_{10}+n_{11}+1$, with $n_{h k}$ occurrences of $h k$, beginning with $i$ and ending with $j$. Also put
(4.2) $f_{i j}(r, s)=f_{i j}\left(r, s \mid x_{00}, x_{01}, x_{10}, x_{11}\right)=\sum_{n h k=0}^{\infty} a_{r s}^{i j}\left(n_{00}, n_{01}, n_{10}, n_{11}\right) x_{00}^{n 00} x_{01}^{n_{01}} x_{10}^{n_{10}} x_{11}^{n_{11}}$,
(4.3)

$$
F_{i j}=F_{i j}(u, v)=\sum_{r, s=0}^{\infty} f_{i j}(r, s) u^{r} v^{s} .
$$

Exactly as in $\S 2$, we have

$$
\left(\begin{array}{ll}
F_{00} & F_{01}  \tag{4.4}\\
F_{10} & F_{11}
\end{array}\right)=\left(\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right)+M\left(\begin{array}{ll}
F_{00} & F_{01} \\
F_{01} & F_{11}
\end{array}\right)
$$

where $M$ is defined in (2.9). Thus

$$
\left(\begin{array}{ll}
F_{00} & F_{01} \\
F_{10} & F_{11}
\end{array}\right)=(I-M)^{-1}\left(\begin{array}{ll}
u & 0 \\
0 & v
\end{array}\right) .
$$

It follows that
(4.5)

$$
\left(\begin{array}{ll}
F_{00} & F_{01} \\
F_{10} & F_{11}
\end{array}\right)=\frac{1}{D}\left(\begin{array}{ll}
u-x_{11} u v & x_{10} u v \\
x_{01} u v & v-x_{00} u v
\end{array}\right),
$$

where as before
(4.6)

$$
D=1-x_{00} u-x_{11} v+\left(x_{00} x_{11}-x_{01} x_{10}\right) u v
$$

For Problem 2 we require
(4.7)

$$
G(u, v)=x_{00} F_{00}+x_{10} F_{01}+x_{01} F_{10}+x_{11} F_{11} .
$$

Hence, by (4.5) and (4.6),

$$
G(u, v)=\frac{x_{00} u+x_{11} v-2\left(x_{00} x_{11}-x_{01} x_{10}\right) u v}{1-x_{00} u-x_{11} v+\left(x_{00} x_{11}-x_{01} x_{10}\right) u v} .
$$

It is convenient to replace this by
(4.8)

$$
2+G(u, v)=\frac{2-x_{00} u-x_{11} v}{1-x_{00} u-x_{11} v+\left(x_{00} x_{11}-x_{01} x_{10}\right) u v} .
$$

In particular, for $u=v$, (4.8) becomes

$$
\begin{equation*}
2+g(u, u)=\frac{2-\left(x_{00}+x_{11}\right) u}{1-\left(x_{00}+x_{11}\right) u+\left(x_{00} x_{11}-x_{01} x_{10}\right) u^{2}} . \tag{4.9}
\end{equation*}
$$

Thus (4.9) furnishes a generating function for Problem 2.
If we put

$$
2+G(u, u)=\sum_{n=0}^{\infty} g_{n} u^{n}, \quad F(u)=\sum_{n=0}^{\infty} f_{n} u^{n}
$$

where, by (2.13)

$$
F(u)=\frac{2 u+\left(x_{01}+x_{10}-x_{00}-x_{11}\right) u^{2}}{1-\left(x_{00}+x_{11}\right) u+\left(x_{00} x_{11}-x_{01} x_{10}\right) u^{2}}
$$

then it is clear that

$$
\left(2-\left(x_{00}+x_{11}\right) u\right) \sum_{0}^{\infty} f_{n} u^{n}=\left(2 u+\left(x_{01}+x_{10}-x_{00}-x_{11}\right) u^{2}\right) \sum_{0}^{\infty} g_{n} u^{n}
$$

Comparison of coefficients gives

$$
\begin{equation*}
f_{n}-\left(x_{00}+x_{11}\right) f_{n-1}=2 g_{n-1}+\left(x_{01}-x_{10}-x_{00}-x_{11}\right) g_{n-2} . \tag{4.10}
\end{equation*}
$$

## 5. SPECIAL CASES OF PROBLEM 2

We take
(5.1)

Then (4.9) reduces to
(5.2)
$x_{00}=x_{01}=x_{10}=1, \quad x_{11}=x$.

$$
2+G(u, u)=\frac{2-(1+x) u}{1-(1+x) u-(1-x) u^{2}} .
$$

For $x=0$ the right side of (5.2) becomes

$$
\frac{2-u}{1-, u-u^{2}}=\sum_{0}^{\infty} L_{n} u^{n}
$$

as was expected. We now define $L_{n, j}$ by means of

$$
\begin{equation*}
\frac{2-(1+x) u}{1-(1+x) u-(1-x) u^{2}}=\sum_{n=0}^{\infty} g_{n}(x) u^{n} \tag{5.3}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{n}(x)=\sum_{j \geqslant 0} L_{n, j^{\prime}}{ }^{j} \tag{5.4}
\end{equation*}
$$

It follows from (5.3) that $g_{n}(x)$ satisfies

$$
\begin{equation*}
g_{n+2}(x)=(1+x) g_{n+1}(x)+(1-x) g_{n}(x) \quad(n \geqslant 0) \tag{5.5}
\end{equation*}
$$

toge ther with $g_{0}(x)=2, g_{1}(x)=1+x$. It is also clear that $L_{n, k}$ satisfies the recurrence

$$
\begin{equation*}
L_{n+2, k}=L_{n+1, k}+L_{n+1, k-1}+L_{n, k}-L_{n, k-1} \quad(n \geqslant 0) \tag{5.6}
\end{equation*}
$$

which is of course the same as (3.6).
The following table is easily computed.

$L_{n, k}:$| $n$ | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 2 |  |  |  |  |  |  |  |  |  | 10 |
| 1 | 1 | 1 |  |  |  |  |  |  |  |  |  |
| 2 | 3 | 0 | 1 |  |  |  |  |  |  |  |  |
| 3 | 4 | 3 | 0 | 1 |  |  |  |  |  |  |  |
| 4 | 7 | 4 | 4 | 0 | 1 |  |  |  |  |  |  |
| 5 | 11 | 10 | 5 | 5 | 0 | 1 |  |  |  |  |  |
| 6 | 18 | 18 | 15 | 6 | 6 | 0 | 1 |  |  |  |  |
| 7 | 29 | 35 | 28 | 21 | 7 | 7 | 0 | 1 |  |  |  |
| 8 | 47 | 64 | 60 | 40 | 28 | 8 | 8 | 0 | 1 |  |  |
| 9 | 76 | 117 | 117 | 93 | 54 | 36 | 9 | 9 | 0 | 1 |  |
| 10 | 123 | 210 | 230 | 190 | 135 | 70 | 45 | 10 | 10 | 0 | 1 |

It is easily proved by means of (5.3) and (5.4) that

$$
\begin{equation*}
g_{n}(1)=\sum_{k=0}^{n} L_{n, k}=2^{n} \quad(n \geqslant 1), \tag{5.7}
\end{equation*}
$$

$$
\begin{equation*}
g_{2 n}(-1)=2^{n+1}, \quad g_{2 n+1}(-1)=0 \quad(n \geqslant 0) \tag{5.8}
\end{equation*}
$$

The table suggests that $L_{n n}=1$,

$$
\begin{cases}L_{n, n-1}=0 & (n>1)  \tag{5.9}\\ L_{n, n-2}=n & (n>2), \\ L_{n, n-3}=n & (n>3) .\end{cases}
$$

These results are easily proved by induction using (5.6).
Comparison of (5.3) with (3.3) gives
(5.10)

$$
g_{n}(x)+(1-x) g_{n-1}(x)=2 f_{n+2}(x)-(1+x) f_{n+1}(x)
$$

In view of (3.5), this implies
(5.11) $\quad g_{n}(x)+(1-x) g_{n-1}(x)=f_{n+2}(x)+(1-x) f_{n}(x) \quad(n \geqslant 1)$.

In particular (5.11) contains the familiar relation $L_{n+1}=F_{n+2}+F_{n}$. It would be of interest to express $g_{n}(x)$ in terms of $f_{k}(x)$.
We find that

$$
g_{0}(x)=f_{3}(x), \quad g_{1}(x)=f_{4}(x)-f_{3}(x), \quad g_{2}(x)=f_{5}(x)-2 f_{4}(x)+2 f_{3}(x),
$$

$$
\begin{gathered}
g_{3}(x)=f_{6}(x)-2 f_{5}(x)+2 f_{4}(x), \quad g_{4}(x)=f_{7}(x)-2 f_{6}(x)+2 f_{5}(x), \quad g_{5}(x)=f_{8}(x)-2 f_{7}(x)+2 f_{6}(x), \\
g_{6}(x)=f_{9}(x)-2 f_{8}(x)+2 f_{7}(x), \quad g_{7}(x)=f_{10}(x)-2 f_{9}(x)+2 f_{8}(x) .
\end{gathered}
$$

This suggests that
(5.12)

$$
g_{n}(x)=f_{n+3}(x)-2 f_{n+2}(x)+2 f_{n+1}(x) \quad(n=0,1,2, \cdots) .
$$

To prove (5.12) we make use of the identity

$$
u(2-(1+x) u)=\left(1-2 u+2 u^{2}\right)(1+(1-x) u)-(1-2 u)\left(1-(1+x) u-(1-x) u^{2}\right)
$$

Dividing both sides by $D=1-(1+x) u-(1-x) u^{2}$, this becomes

$$
u \frac{2-(1+x) u}{D}=\left(1-2 u+2 u^{2}\right) \frac{1+(1-x) u}{D}-1+2 u
$$

Hence, by (3.3) and (5.3),

$$
u \sum_{n=0}^{\infty} g_{n}(x) u^{n}=\left(1-2 u+2 u^{2}\right) \sum_{n=0}^{\infty} f_{n+2}(x) u^{n}-1+2 u
$$

Comparing coefficients of $u^{n}$, we get

$$
g_{n-1}(x)=f_{n+2}(x)-2 f_{n+1}(x)+2 f_{n}(x) \quad(n \geqslant 1)
$$

which is equivalent to (5.12).
From (5.12) we get

$$
\begin{equation*}
L_{n, k}=F_{n+3, k}-2 F_{n+2, k}+2 F_{n+1, k} \quad(k=0,1,2, \cdots) . \tag{5.13}
\end{equation*}
$$

Note that, for $k=0,(5.13)$ reduces to the familiar

$$
L_{n}=F_{n+3}-2 F_{n+2}+2 F_{n+1}=-F_{n+2}+3 F_{n+1}=2 F_{n+1}-F_{n}=F_{n+1}+F_{n-1}
$$

Finally, replacing $x$ by $x / u$ in (5.3), we get

$$
\frac{2-x-u}{1-x-(1-x) u-u^{2}}=\sum_{n=0}^{\infty} u^{n} \sum_{k=0}^{\infty} L_{n+k, k} x^{k}
$$

This yields

$$
\begin{equation*}
\sum_{k=0}^{\infty} L_{n+k, k} x^{k}=\frac{3-2 x}{1-x} \sum_{2 s \leqslant n} \frac{1}{(1-x)^{s}}-\sum_{2 s \leqslant n+1}\binom{n-s+1}{s} \frac{1}{(1-x)^{s}} \tag{5.14}
\end{equation*}
$$

For example

$$
\sum_{k=0}^{\infty} L_{k+1, k} x^{k}=\frac{3-2 x}{1-x}-\left(1+\frac{1}{1-x}\right)=1
$$

which is correct.

## REFERENCE

1. L. Carlitz, "Zero-One Sequences and Fibonacci Numbers of Higher Order," The Fibonacci Quarterly, Vol. 12 (1974), pp. 1-10.

为

## THE UNI FIED NUMBER IDENTITY

GUY A. R GUILLOT<br>Montreal, Quebec, Canada

The identity illustrated below shows a relation connecting all of the most important constants and numbers in mathematics.

$$
e^{i \pi}\left(2 \beta+\sum_{n=0}^{\infty}(-1)^{n}\left(\sqrt{5} F_{n+1}-L_{n+1}\right)\right)+a \sum_{n=0}^{\infty} \frac{(-1)^{n} E_{2 n} \sum_{k=1}^{\infty}(1 / k)^{2 n}}{B_{n}(10)^{2 n}}+1=0
$$

In the usual notation the above identity has the following constants and numbers:
CONSTANTS
$0,1,-1,2, \sqrt{5}, i=\sqrt{-1}, e, \pi, a=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}, 10$.
NUMBERS
Notation
Explanation
$n \quad n=0,1, \cdots \quad$ denotes zero and the set of positive integers.
$1 / k \quad k=1,2, \cdots \quad$ is the collection of fractions of the form $1 / k$.
$F_{n+1} \quad n=0,1, \cdots \quad$ denotes the $(n+1)^{\text {th }}$ Fibonacci number.
$L_{n+1} \quad n=0,1, \cdots \quad " \quad " \quad$ Lucas number.
$B_{n} \quad n=0,1, \cdots \quad " \quad n^{\text {th }} \quad$ Bernoulli number.
$E_{2 n} \quad n=0,1, \cdots \quad " 2 n^{\text {th }}$ even Euler number.
The author of this note wishes to point out that since the letter $n$ denotes zero and the set of positive integers, then it must denote most of the conceivable numbers defined by mathematicians so far. Let us name some of these numbers. Prime, Fermat, Guy Moebius, Perfect, Pythagorean, Random, Triangular, Amicable, Automorphic, Palindromic, and the list goes on and on $\cdots$.

