FIBONACCI NOTES

6. A GENERATING FUNCTION FOR HALSEY'S FIBONACCI FUNCTION

L. CARLITZ

Duke University, Durham, North Carolina 27706

1. Halsey [2] defined a Fibonacci function by means of

$$
\begin{equation*}
F_{u}=\sum_{k=0}^{m}\left\{(u-x) \int_{0}^{1} x^{u-2 k-1}(1-x)^{k} d x\right\} \tag{1.1}
\end{equation*}
$$

where m is the unique integer satisfying

$$
\begin{equation*}
1 / 2 u-1 \leqslant m<1 / 2 u \text {, } \tag{1.2}
\end{equation*}
$$

that is
(1.3)

$$
m=\left\{\begin{array}{lc}
{[1 / 2 u]} & (1 / 2 u \neq \text { integer }) \\
1 / 2 u-1 & (1 / 2 u=\text { integer })
\end{array} .\right.
$$

The definition (1.1) is equivalent to

$$
\begin{equation*}
F_{u}=\sum_{k=0}^{m}\binom{u-k-1}{k} \tag{1.4}
\end{equation*}
$$

where again m is defined by (1.3).
In a recent note [1], Bunder has proved that F_{u} as defined by (1.4) satisfies the recurrence

$$
F_{u+1}-F_{u}-F_{u-1}=\left\{\begin{array}{cc}
0 & (2 m<u \leqslant 2 m+1) \tag{1.5}\\
\binom{u-m-2}{m+1} & (2 m+1<u \leqslant 2 m+2)
\end{array}\right.
$$

In the present note we construct a generating function for the sequence

$$
\left\{F_{u+n}\right\} \quad(j=0,1,2, \cdots ; 0<u \leqslant 1) .
$$

We show that

$$
\begin{equation*}
\sum_{n=0}^{\infty} F_{u+n} x^{n}=\frac{\left(1-x^{2}\right)^{1-u}}{1-x-x^{2}} \quad(0<u \leqslant 1) \tag{1.6}
\end{equation*}
$$

This result contains (1.5). It also follows from (1.6) that

$$
\begin{equation*}
F_{u+n}=\sum_{0 \leqslant 2 j \leqslant n}\binom{u+j-2}{j} F_{n-2 j+1} \quad(0<u \leqslant 1) \tag{1.7}
\end{equation*}
$$

where the $F_{n-2 j+1}$ on the right are ordinary Fibonacci numbers. Thus F_{u+n} is a polynomial in u of degree $\leqslant n / 2$. Indeed the coefficients of the polynomials
(1.8)

$$
P_{n}(u)=n!F_{u+2 n}
$$

$$
Q_{n}(u)=n!F_{u+2 n+1}
$$

are positive integers. For some properties of these coefficients see $\S 4$ below.
2. Since m as defined by (1.2), is a function of u, we put $m=m(u)$. Then clearly
(2.1) $\quad m(u+2 j)=m(u)+j \quad(j=0,1,2, \ldots)$.

Assume that

$$
0<u \leqslant 2
$$

Then by (1.2), $m(u)=0$ and $m(u+2 j)=j$. Thus

$$
F_{u+2 j}=\sum_{k=0}^{j}(u+2 j-k-1)=\sum_{k=0}^{j}\binom{u+j+k-1}{j-k} .
$$

Hence

$$
\begin{aligned}
\sum_{j=0}^{\infty} F_{u+2 j} x^{2 j} & =\sum_{j=0}^{\infty} x^{2 j} \sum_{k=0}^{j}\binom{u+j+k-1}{j-k}=\sum_{k=0}^{\infty} x^{2 k} \sum_{j=0}^{\infty}\binom{u+j+2 k-1}{j} x^{2 j} \\
& =\sum_{k=0}^{\infty} x^{2 k}\left(1-x^{2}\right)^{-u-2 k}=\frac{\left(1-x^{2}\right)^{-u}}{1-x^{2}\left(1-x^{2}\right)^{-2}}
\end{aligned}
$$

so that
(2.3)

$$
\sum_{j=0}^{\infty} F_{u+2 j} x^{2 j}=\frac{\left(1-x^{2}\right)^{2-u}}{\left(1-x^{2}\right)^{2}-x^{2}} \quad(0<u \leqslant 2)
$$

Assume next that $0<u \leqslant 1$, so that $m(u+1)=0$ and $m(u+2 j+1)=j$. Then as above

$$
\begin{aligned}
\sum_{j=0}^{\infty} F_{u+2 j+1} x^{2 j+1} & =\sum_{j=0}^{\infty} x^{2 j+1} \sum_{k=0}^{j}\binom{u+j+k}{j-k}=\sum_{k=0}^{\infty} x^{2 k+1} \sum_{j=0}^{\infty}\binom{u+j+2 k}{j} x^{2 j} \\
& =\sum_{k=0}^{\infty} x^{2 k+1}\left(1-x^{2}\right)^{-u-2 k-1}=\frac{x\left(1-x^{2}\right)^{-u-1}}{1-x^{2}\left(1-x^{2}\right)^{-2}}
\end{aligned}
$$

This gives
(2.4)

$$
\sum_{j=0}^{\infty} F_{u+2 j+1} x^{2 j+1}=\frac{x\left(1-x^{2}\right)^{1-u}}{\left(1-x^{2}\right)^{2}-x^{2}} \quad(0<u \leqslant 1)
$$

Combining (2.3) and (2.4), we get

$$
\begin{equation*}
\sum_{j=0}^{\infty} F_{u+j} x^{j}=\frac{\left(1-x^{2}\right)^{1-u}}{1-x-x^{2}} \quad(0<u \leqslant 1) \tag{2.5}
\end{equation*}
$$

3. It is clear from (2.5), to begin with, that

$$
\begin{equation*}
\lim _{u=1-0} F_{u+n}=F_{n+1} \quad(n=0,1,2, \ldots), \tag{3.1}
\end{equation*}
$$

where F_{n+1} denotes an ordinary Fibonacci number. In the next place, writing (2.5) in the form

$$
\left(1-x-x^{2}\right) \sum_{j=0}^{\infty} F_{u+j} x^{j}=\sum_{n=0}^{\infty}\binom{u+n-2}{n} x^{2 n}
$$

and equating coefficients, we get

$$
\left\{\begin{array}{l}
F_{u+2 n+1}-F_{u+2 n}-F_{u+2 n-1}=0 \tag{3.2}\\
F_{u+2 n+2}-F_{u+2 n+1}-F_{u+2 n}=\binom{u+2 n}{2 n+2}
\end{array} \quad(0<u<1) ;\right.
$$

Since, by (1.2),
and

$$
m(u+2 n)=m(u+2 n+1)=n \quad(0<u \leqslant 1),
$$

$$
2 n<u+2 n \leqslant 2 n+1, \quad 2 n+1<u+2 n+1 \leqslant 2 n+2,
$$

it follows that (3.2) is equivalent to (1.5).
Since the right-hand side of (2.5) is equal to

$$
\sum_{n=0}^{\infty} F_{n+1} x^{n} \sum_{j=0}^{\infty}\binom{u+j-2}{j} x^{2 j}
$$

we get

$$
\begin{equation*}
F_{u+n}=\sum_{0 \leqslant 2 j \leqslant n}\binom{u+j-2}{j} F_{n-2 j+1} \quad(0<u \leqslant 1) . \tag{3.3}
\end{equation*}
$$

Alternatively, since

$$
\frac{1-x^{2}}{1-x-x^{2}}=\left(1-x^{2}\right) \sum_{n=0}^{\infty} F_{n+1} x^{n}=1+x+\sum_{n=2}^{\infty}\left(F_{n+1}-F_{n-1}\right) x^{n}=1+\sum_{n=1}^{\infty} F_{n} x^{n}
$$

it follows from (2.5) that

$$
\begin{equation*}
F_{u+n}=\sum_{0 \leqslant 2 j \leqslant n}^{\prime}\binom{u+j-1}{j} F_{n-2 j} \quad(0<u \leqslant 1) \tag{3.4}
\end{equation*}
$$

where the dash indicates that, if F_{0} occurs, it is to be taken equal to 1 .
From (3.3) or (3.4) we infer that, for $0<u \leqslant 1, F_{u+n}$ is a polynomial of degree $\leqslant n / 2$. Since

$$
\binom{u+j-1}{j}=\frac{u(u+1) \cdots(u+i-1)}{j!},
$$

the coefficients of the polynomial are positive. For example

$$
\begin{aligned}
F_{u}=1, \quad & F_{u+1}=1, \quad F_{u+2}=1+u, \quad F_{u+3}=2+u, \quad F_{u+4}=1 / 2\left(6+3 u+u^{2}\right), \\
& F_{u+5}=\frac{1}{2}\left(10+5 u+u^{2}\right), \quad F_{u+6}=\frac{1}{6}\left(48+23 u+6 u^{2}+u^{3}\right) .
\end{aligned}
$$

Another corollary of (3.3) may be noted. We have

$$
\begin{gathered}
F_{u+n+1} F_{k}-F_{u+n} F_{k+1}=\sum_{0 \leqslant 2 j \leqslant n+1}\binom{u+j-2}{j} F_{n-2 j+2} F_{k} \\
\left.-\sum_{0 \leqslant 2 j \leqslant n}\binom{u+j-2}{j} F_{n-2 j+1} F_{k+1}=\sum_{0 \leqslant 2 j \leqslant n+1}\binom{u+j-2}{j} F_{n-2 j+2} F_{k}-F_{n-2 j+1} F_{k+1}\right) .
\end{gathered}
$$

Since

$$
F_{m+1} F_{n}-F_{m} F_{n+1}=(-1)^{n+1} F_{m-n}
$$

we get

$$
\begin{equation*}
F_{u+n+1} F_{k}-F_{u+n} F_{k+1}=(-1)^{k+1} \sum_{0 \leqslant 2 j \leqslant n+1}\binom{u+j-2}{j} F_{n-k-2 j+1} . \tag{3.5}
\end{equation*}
$$

In particular, for $0 \leqslant k \leqslant n+1$, again making use of (3.3),

$$
\begin{align*}
& F_{u+n+1} F_{k}-F_{u+n} F_{k+1} \tag{3.6}\\
= & (-1)^{k+1} F_{u+n+k}+(-1)^{k+1} \sum_{n-k+1 \leqslant 2 j \leqslant n+1}\binom{u+j-2}{j} F_{2 j-n+k-1} \quad(0 \leqslant k \leqslant n) .
\end{align*}
$$

For $k=n$ this reduces to

$$
\begin{equation*}
F_{u+n+1} F_{n}-F_{u+n} F_{n+1}=(-1)^{n+1} F_{u}+(-1)^{n+1} \sum_{0<2 j \leqslant n+1}\binom{u+j-2}{j} F_{2 j-1} . \tag{3.7}
\end{equation*}
$$

Similar results are implied by (3.4).
4. We have noted above that, for $0<u \leqslant 1, F_{u+n}$ is a polynomial of degree $\leqslant n / 2$, indeed of degree $[n / 2]$. Put

$$
\text { (4.1) } n!F_{u+2 n}=P_{n}(u), \quad n!F_{u+2 n+1}=Q_{n}(u) \text {, }
$$

so that $P_{n}(u)$ and $Q_{n}(u)$ are of degree n. However we now think of them as defined for all u by means of (3.4) and (4.1). It follows from (1.5) that

Now put

$$
\left\{\begin{array}{l}
P_{n}(u)=n P_{n-1}(u)+n Q_{n-1}(u)+(u+n-2) \cdots u(n-1) \tag{4.2}\\
Q_{n}(u)=P_{n}(u)+n Q_{n-1}(u) .
\end{array}\right.
$$

$$
P_{n}(u)=\sum_{k=0}^{n} p(n, k) u^{k}, \quad Q_{n}(u)=\sum_{k=0}^{n} q(n, k) u^{k}
$$

We have also

$$
(u+n-1) \cdots(u+1) u=\sum_{k=0}^{n} S(n, k) u^{k},
$$

where $S(n, k)$ denotes a Stirling number of the second kind. Thus

$$
(u+n-1) \cdots u(u-1)=\sum_{k=0}^{n+1}\left(S(n, k-1)-S(n, k) u^{k} .\right.
$$

Hence (4.2) gives
(4.3)
and
(4.4)

$$
q(n, k)=p(n, k)+n q(n-1), k)
$$

$$
p(n, k)=n p(n-1, k)+n q(n-1, k)+S(n-1, k-1)-S(n-1, k) .
$$

Using either (4.2) or (4.3) and (4.4), the following tables are easily computed.

$p(n, k):$| k | 0 | 1 | 2 | 3 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| n | 0 | 1 | | | |
| 1 | 1 | 1 | | | |
| 2 | 6 | 3 | 1 | | |
| 3 | 48 | 23 | 6 | 1 | |
| 4 | 504 | 242 | 59 | 10 | 1 |

$q(n, k): \quad$| n | 0 | 1 | 2 | 3 | 4 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | | | | |
| 1 | 2 | 1 | | | |
| 2 | 10 | 5 | 1 | | |
| 3 | 78 | 38 | 9 | 1 | |
| 4 | 816 | 394 | 95 | 14 | 1 |

It is evident from the recurrences (4.3) and (4.4) that the $p(n, k)$ and $q(n, k)$ are integers. Moreover, by (3.4), they are positive integers.
By (3.3) and (4.1),

$$
\text { (4.5) } \quad P_{n}(1)=n!F_{2 n+1}, \quad Q_{n}(1)=n!F_{2 n+2} .
$$

This furnishes a partial check on the computed values. For example, using the table for $p(n, k)$, we get

$$
\sum_{k=0}^{4} p(4, k)=816=24.34=24 F_{9}
$$

Similarly

$$
\sum_{k=0}^{4} q(4, k)=1320=24.35=24 F_{10}
$$

It is clear that

$$
\text { (4.6) } \quad p(n, n)=q(n, n)=1 \quad(n=0,1,2, \cdots) .
$$

Taking $k=n-1$ in (4.3) and n in (4.4), we get

(4.7)	
and	
(4.8)	$q(n, n-1)=p(n, n-1)+n \quad(n \geqslant 1)$
($2(n+1, n)=2(n+1)+S(n, n-1)-1$,	

respectively. Since

$$
S(n, n-1)=1 / 2 n(n-1)
$$

it follows that

$$
\left\{\begin{array}{l}
p(n, n-1)=1 / 2 n(n+1) \tag{4.9}\\
q(n, n-1)=1 / 2 n(n+3)=p(n+1, n)-1 .
\end{array}\right.
$$

As for $k=0$, it is evident from (3.4) that
so that

$$
\lim _{u=0} F_{u+n}=F_{n},
$$

(4.10)

$$
p(n, 0)=n!F_{2 n}, \quad q(n, 0)=n!F_{2 n+1} .
$$

It would be of interest to find combinatorial interpretations of $p(n, k)$ and $q(n, k)$.

REFERENCES

1. M. W. Bunder, "On Halsey's Fibonacci Function," The Fibonacci Quarterly, Vol. 13, No. 2 (April 1975), pp. 209-210.
2. E. Halsey, "The Fibonacci Number F_{u} where u is not an Integer," The Fibonacci Quarterly, Vol. 3, No. 2 (April 1965), pp. 147-152.

*

[Continued from p. 245.]
(As a corollary, note that we have proved

$$
\left.F_{m+1} F_{m-1}-F_{m}^{2}=\operatorname{det}\left(g^{m}\right)=(-1)^{m} .\right)
$$

Then the lemma implies there is a sequence $\left\{m_{j}\right\}$ for which

$$
g^{m_{j}} \rightarrow 1=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

in the p-adic topology. Thus we can choose $\left\{m_{j}\right\}$ so that $d\left(1, g^{m_{j}}\right)<p^{-j}$. Then p^{j} divides $F_{m_{j}}$ and $1-F_{m_{j}+1}$, which proves the theorem.
It is clear that one can vary G and g in the argument above to prove a class of theorems related to the well known one quoted.

*

