ON MINIMAL NUMBER OF TERMS IN REPRESENTATION OF NATURAL NUMBERS AS A SUM OF FIBONACCI NUMBERS

M. DEZA

31, rue P. Borghese 92 Neuilly-sur-Seine, France

Let $f(k)$ denote this number for any natural number k. It is shown that $f(k) \leqslant n$ for $k<F_{2 n+2}-2, f(k)=n$ for $k=F_{2 n+2}-2$ and $f(k)=n+1$ for $k=F_{2 n+2}-1$.

1. A base for natural numbers is any sequence S of positive integers for which numbers n and N may be found such that any positive integer $\geqslant N$ may be represented as a sum of $\leqslant n$ members of S. Any arithmetical progression

$$
1, \quad 1+d, \quad 1+2 d, \cdots,
$$

where d is an integer and $d>1$, is a base (it is enough to take $n=d, N=1$). A geometrical progression

$$
\begin{equation*}
1, q, q^{2}, \cdots, \tag{2}
\end{equation*}
$$

where q is an integer and $q>1$, is not a base; if we take for any positive integers n and N the number

$$
\sum_{i=0}^{m} q^{i}=\frac{q^{m+1}-1}{q-1}
$$

where

$$
m=\max (n,[\lg q\{1+N(q-1)\}]),
$$

is greater than N, but may not be represented as a sum of $\leqslant n$ numbers of progression (2). The sequence of the Fibonacci numbers is defined as $F_{i}=i$, where $i=1,2 ; F_{i}=F_{i-1}+F_{i-2}$, where $i>2$. This sequence may be considered additive by definition, but it increases faster than any arithmetical progression of type (I). On the other hand a specific characteristic of Fibonacci numbers

$$
\lim _{i \rightarrow \infty} \frac{F_{i+1}}{F_{i}}=\frac{\sqrt{5}+1}{2}
$$

shows that they increase asymptotically as a geometrical progression with a denominator

$$
\frac{\sqrt{5}+1}{2}=q^{*}
$$

however, $q^{*}<2$, i.e., Fibonacci numbers increase more slowly than any geometrical progression of type (2). We show that Fibonacci numbers, in the representation of the positive integers as a sum of these numbers, act as a geometrical progression of type (2). Let us call

$$
k=\sum_{i=1}^{f} F_{m_{i}}, \quad m_{i} \leqslant m_{i-1}
$$

a correct decomposition, if $f=1$, or if $f>1$ we have $m_{i}<m_{i-1}-1$ for all $i \in[2, f]$.
The theorem of Zeckendorf gives that for any positive integer there exists a correct decomposition; moreover any decomposition of the positive integer into a sum of Fibonacci numbers contains no fewer terms than its correct decomposition.
2. Theorem 1.
(1) For any positive integer n the number $F_{2 n+2}-1$ is the smallest number which is not representable as a sum of $\leqslant n$ Fibonacci numbers.
(2) Number $F_{2 n+2}-1$ may be represented as a sum of $n+1$ Fibonacci numbers.
(3) Number $F_{2 n+2}-2$ is not representable as a sum of $<n$ Fibonacci numbers.

Indeed, if $n=1$, theorem is evident. Let us assume that the theorem is correct for $n \leqslant m$. The numbers of segment [$1, F_{2 m+2}-2$] may be represented for part (1) of the theorem, as a sum of $\leqslant m$ Fibonacci numbers. Number $\left(F_{2 m+2}-2\right)+1=F_{2 m+2}-1$ may be represented for part (2) as a sum of $m+1$ Fibonacci numbers. Number $\left(F_{2 m+2}-2\right)+2=F_{2 m+2}$ is a Fibonacci number. The numbers of segment
(3)

$$
\left[F_{2 m+2}+1, \quad F_{2 m+2}+\left(F_{2 m+1}-1\right)\right]
$$

are sums of number $F_{2 m+2}$ and of the corresponding numbers of segment [$1, F_{2 m+1}-1$], which for part (1) of the theorem (since $F_{2 m+1}-1 \leqslant F_{2 m+2}-2$) are representable as a sum of $\leqslant m$ Fibonacci numbers. Number $F_{2 m+2}+\left(F_{2 m+1}-1\right)+1=F_{2 m+3}$ is a Fibonacci number. The numbers of the segment

$$
\left[F_{2 m+3}+1, \quad F_{2 m+3}+\left(F_{2 m+2}-2\right)\right]
$$

are representable as a sum of $\leqslant m+1$ Fibonacci numbers for the same reason as for the numbers of segment (3); though in this case we have the number $F_{2 m+3}$ and not $F_{2 m+2}$. Thus all numbers not greater than

$$
F_{2 m+3}+\left(F_{2 m+2}-2\right)=F_{2(m+1)+2}-2
$$

are representable as sums of $\leqslant m+1$ Fibonacci numbers. A correct decomposition of numbers $F_{2 m+2}-2$ and $F_{2 m+2}-1$ contains respectively (on the basis of the inductive assumptions) m and $m+1$ terms. If to these decompositions we add on the left-hand side the term $F_{2 m+3}$ we obtain the correct decomposition of numbers $F_{2 m+4}-2$ and $F_{2 m+4}-1$. These latter contain respectively $m+1$ and $m+2$ terms. From this and from the theorem of Zeckendorf it follows that numbers $F_{2(m+1)+2}-2$ and $F_{2(m+1)+2-1}$ may be represented respectively as the sums of $m+1$ (but not less) and respectively $m+2$ (but not less) Fibonacci numbers.
By the way, it is clear that

$$
F_{2 n+2}-2=\sum_{i=1}^{2 n} F_{i}=\sum_{i=1}^{n} F_{2 i+1}
$$

One of more detailed works on these problems is [2].

REFERENCES

1. E. Zeckendorf, "Representation des nombres naturels par une somme de nombres de Fibonacci ou des nombres de Lucas," Bull. Soc. Royale Sci. de Liege, 3-9, 1972, pp. 779-182.
2. L. Carlitz, V. E. Hoggatt, Jr., and R. Scoville, "Fibonacci Representations," The Fibonacci Quarterly, Vol. 10, No. 1 (Special Issue, January 1972), pp. 1-28.

 LETTER TO THE EDITOR

April 28, 1970
In regard to the two articles, "A Shorter Proof" by Irving Adler (December, 1969 Fibonacci Quarterly) and "1967 as the Sum of Three Squares," by Brother Alfred Brousseau (April, 1967 Fibonacci Quarterly), the general result is as follows:

$$
x^{2}+y^{2}+z^{2}=n
$$

is solvable if and only if n is not of the form $4^{t}(8 k+7)$, for $t=0,1,2, \cdots, k=0,1,2, \cdots$. See [1].
Since $1967=8(245)+7,1967 \neq x^{2}+y^{2}+z^{2}$. A lesser result known to Fermat and proven by Descartes is that no integer $8 k+7$ is the sum of three rational squares [2]. The really short and usual proof is:
For x, y, and z any integers, $x^{2} \equiv 0,1$, or $4(\bmod 8)$ so that $x^{2}+y^{2}+z^{2} \equiv 0,1,2,3,4,5$, or $6(\bmod 8)$ or $x^{2}+y^{2}+z^{2} \equiv 7(\bmod 8)$.

REFERENCES

1. William H. Leveque, Topics in Number Theory, Vol. I, p. 133.
2. Leonard E. Dickson, History of the Theory of Numbers, Vol. II, Chap. VII, p. 259.
