LIMITING RATIOS OF CONVOLVED RECURSIVE SEQUENCES

V.E. HOGGATT, JR.
San Jose State University, San Jose, California 95192
and
KRISHN ASWAMI ALLADI
Vivekananda College, Madras $\mathbf{6 0 0} 004$, India

It is a well known result that, for the Fibonacci numbers $F_{n+2}=F_{n+1}+F_{n}, F_{0}=0, F_{1}=1$,

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\frac{1 \pm \sqrt{5}}{2} .
$$

See [1]. Our main result in this paper is that convolving linear recurrent sequences leaves limiting ratios unchanged. Some particular cases of our theorem prove an interesting study. It is indeed surprising that such striking limiting cases have been left unnoticed.
Definition 1. If $\left\{u_{n}\right\}_{n=0}^{\infty}$ is a sequence of positive real numbers and if

$$
\lambda=\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}},
$$

then λ is defined to be the limiting ratio of the sequence $\left\{u_{n}\right\}$.
Definition.2. If $\left\{u_{n}\right\}$ is a linear recurrence sequence

$$
\begin{equation*}
a_{0} u_{n+r}+a_{1} u_{n+r-1}+a_{2} u_{n+r-2}+\cdots+a_{r} u_{n}=0 \tag{1}
\end{equation*}
$$

then

$$
a_{0} x^{r}+a_{1} x^{r-1}+\cdots+a_{r}=P_{u}(x)
$$

is called the auxiliary polynomial for the sequence $\left\{u_{n}\right\}$.
Definition 3. If $\left\{u_{n}\right\}=U$ and $\left\{v_{n}\right\}=V$ are two linear recurrence sequences with generating functions

$$
\frac{P(x)}{Q(x)} \quad \text { and } \quad \frac{R(x)}{S}(x)^{\prime},
$$

respectively, we say $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$ are relatively prime if

$$
(P(x), S(x))=(R(x), Q(x))=1 .
$$

The following classic result was known to Euler:
Lemma. If the auxiliary polynomial $P_{u}(x)$ for the sequence $\left\{u_{n}\right\}$ in (1) has a single root of largest absolute value, say λ, then

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lambda .
$$

Let us call such a λ as a dominant root of $P_{u}(x)$. Moreover, let $\operatorname{Dom}(a, \beta)$ represent the number with bigger absolute value.
The Lemma stated above leads to the following general theorem.
Theorem 1. Let

$$
\left\{u_{n}\right\}_{n=0}^{\infty} \quad \text { and } \quad\left\{v_{n}\right\}_{n=0}^{\infty}
$$

be two relatively prime linear recurrence sequences with auxiliary polynomials $P_{u}(x)$ and $P_{v}(x)$ whose dominant roots are λ_{u}, and λ_{w}. Then, if $\left\{w_{n}\right\}_{n=0}^{\infty}$ is the convolution sequence of $\left\{u_{n}\right\}$ and $\left\{v_{n}\right\}$,

$$
\begin{equation*}
w_{n}=\sum_{k=0}^{n} v_{k} u_{n-k} \tag{2}
\end{equation*}
$$

then

$$
\lim _{n \rightarrow \infty} \frac{w_{n+1}}{w_{n}}=\operatorname{Dom}\left(\lambda_{u}, \lambda_{v}\right) .
$$

Proof. Consider a polynomial $P(x)$ with non-zero roots $a_{1}, a_{2}, \cdots, a_{n}$. Let $P^{*}(x)$ denote a polynomial with roots $1 / a_{1}, 1 / a_{2}, \cdots, 1 / a_{n}$. We call $P^{*}(x)$ the reciprocal of $P(x)$. Now denote the reciprocals of $P_{u}(x)$ and $P_{v}(x)$ by $P_{u}^{*}(x)$ and $P_{v}^{*}(x)$, respectively. It is known from the theory of linear recurrence that
(3)

$$
\sum_{n=0}^{\infty} u_{n} x^{n}=\frac{R(x)}{P_{u}^{*}(x)}
$$

and
(4)

$$
\sum_{n=0}^{\infty} v_{n} x^{n}=\frac{S(x)}{P_{v}^{*}(x)}
$$

for some polynomials $R(x)$ and $S(x)$.
It is quite clear from (2), (3) and (4) that

$$
\begin{equation*}
\sum_{n=0}^{\infty} w_{n} x^{n}=\frac{R(x) S(x)}{P_{\nu}^{*}(x) P_{v}^{*}(x)}=\frac{T(x)}{P_{\nu}^{*}(x) P_{V}^{*}(x)} \tag{5}
\end{equation*}
$$

which reveals that $\left\{w_{n}\right\}$ is also a linear recurrence sequence. It is easy to prove that if $P_{w}(x)$ denotes the auxiliary polynomial of $\left\{w_{n}\right\}$, then its reciprocal $P_{w}^{*}(x)$ obeys

$$
\begin{equation*}
P_{w}^{*}(x)=P_{u}^{*}(x) P_{v}^{*}(x) . \tag{6}
\end{equation*}
$$

It is clear that $1 / \lambda_{u}$ and $1 / \lambda_{v}$ are the roots of $P_{u}^{*}(x)$ and $P_{v}^{*}(x)$ with minimum absolute value, so that $\min \left(1 / \lambda_{u}, 1 / \lambda_{v}\right)$ is the root of $P_{w}^{*}(x)$ with minimum absolute value. But, since $P_{w}^{*}(x)$ is the reciprocal of $P_{w}(x), \operatorname{Dom}\left(\lambda_{u}, \lambda_{v}\right)$ is the dominant root of $P_{w}(x)$. This together with the lemma proves

$$
\lim _{n \rightarrow \infty} \frac{w_{n+1}}{w_{n}}=\lambda
$$

We state below some particular cases of the above theorem.
Theorem 2. Let $\left\{u_{n}\right\}_{n=0}^{\infty}$ be a linear recurrence sequence

$$
u_{n+1}=u_{n}+u_{n-r}, \quad u_{0}=0, \quad u_{1}=u_{2}=u_{3}=\cdots=u_{r}=1, \quad r \in Z^{+} .
$$

Let $g_{n, 1}$ denote the first convolution sequence of $\left\{u_{n}\right\}_{n=0}^{\infty}$

$$
\begin{gather*}
u_{n} \sum_{n=0}^{\infty} \\
g_{n, 1}=\sum_{k=0}^{n} u_{k} u_{n-k} \tag{7}
\end{gather*}
$$

and $g_{n, r}$ the $r^{\text {th }}$ convolution ($u_{n}=g_{n, 0}$)
(8)

$$
g_{n, r}=\sum_{k=0}^{n} g_{k, r-1} u_{n-k}
$$

Then $\lim _{n \rightarrow \infty} u_{n+1} / u_{n}$ exists and
for every $r \in Z^{+}$.

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow \infty} \frac{g_{n+1, r}}{g_{n, r}}
$$

Proof. The auxiliary polynomial for $\left\{u_{n}\right\}_{n=0}^{\infty}$ is $x^{r+1}-x^{r}-1$. We will first prove that the root with largest absolute value is real. Denote the auxiliary polynomial by

$$
P_{u}(x)=x^{r+1}-x^{r}-1
$$

Clearly, $P_{u}(1)=-1<0$ and $P_{u}(\infty)=\infty$. Further,

$$
\frac{d P_{u}(x)}{d x}=(r+1) x^{r}-r x^{r-1}>0
$$

for $1<x<\infty$ so that $P_{u}(x)=0$ for $1 \leqslant x<\infty$ at precisely one point, say λ_{u}. It is also clear that $P_{u}(x)>0$ for $x>\lambda_{u}$ implies
(9)

$$
\left|x^{r+1}\right|>\left|x^{r}+1\right|
$$

for $x>\lambda_{u}$.
Let z_{o} be a complex root of $P_{u}(x)=0$ with $\left|z_{o}\right|>\lambda_{u}$. Now, since z_{o} is a root of $P_{u}(x)=0$,

$$
\left|z_{0}^{r+1}\right|=\left|z_{0}^{r}+1\right|
$$

But $\left|z_{o}\right|>\lambda_{u}$, and comparing with (9) we have

$$
\left|z_{0}^{r+1}\right| \leqslant\left|z_{0}^{r}\right|+|7|,
$$

a contradiction. One may also show similarly that there is no other root z_{o} with $\left|z_{o}\right|=\lambda_{u}$ proving that λ_{u} is a dominant root of $P_{u}(x)$. This proves that the limiting ratio of $\left\{u_{n}\right\}$ exists and that

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lambda_{u} .
$$

Further, Theorem 1 gives

$$
\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=\lim _{n \rightarrow \infty} \frac{g_{n+1, r}}{g_{n, r}}
$$

by induction on r and the definition of $g_{n, r}$ in (8).
Theorem 3. If $t, s \in Z^{+}$and $t<s$, then

$$
\lim _{n \rightarrow \infty} \frac{g_{n, t}}{g_{n, s}}=0
$$

Proof. For the linear recurrence sequence $\left\{u_{n}\right\}$ satisfying

$$
u_{n+1}=u_{n}+u_{n-r}, \quad u_{0}=0, \quad u_{1}=u_{2}=\ldots=u_{r}=1,
$$

define a companion sequence of polynomials

$$
\begin{gather*}
u_{n+1}(x)=x u_{n}(x)+u_{n-r}(x) \tag{10}\\
u_{0}(x)=0, \quad u_{1}(x)=1, \quad u_{2}(x)=x, \cdots, u_{r}(x)=x^{r-1} .
\end{gather*}
$$

Denote by $g_{n, o}(x)=u_{n}(x)$,

$$
g_{n, 1}(x)=\sum_{k=0}^{n} u_{k}(x) u_{n-k}(x)
$$

and

$$
\begin{equation*}
g_{n, t}(x)=\sum_{k=0}^{n} g_{k, r-1}(x) u_{n-k}(x) \tag{11}
\end{equation*}
$$

One of us (K. A.) has established in [2] that

$$
\begin{equation*}
\frac{d^{t} u_{n}(x)}{t!d x^{t}}=g_{n, t}(x) . \tag{12}
\end{equation*}
$$

We know from (10) that

$$
\begin{equation*}
\frac{d^{t} u_{n+1}(x)}{d x^{t}}=x \frac{d^{t} u_{n}(x)}{d x^{t}}+t \cdot \frac{d^{t-1} u_{n}(x)}{d x^{t-1}}+\frac{d^{t} u_{n-r}(x)}{d x^{t}} . \tag{13}
\end{equation*}
$$

Now, (12) makes (13) reduce to
(14) $\quad g_{n+1, t}(x)=x g_{n, t}(x)+g_{n-r, t}(x)+g_{n, t-1}(x)$.

Note from (11) that $g_{n, t}(1)=g_{n, t}$ so that (14) can be rewritten as
(15)

$$
g_{n+1, t}=g_{n, t}+g_{n-r, t}+g_{n, t-1} .
$$

Dividing (15) throughout by $g_{n, t}$ we get

$$
\begin{equation*}
\frac{g_{n+1, t}}{g_{n, t}}=1+\frac{g_{n-r, t}}{g_{n, t}}+\frac{g_{n, t-1}}{g_{n, t}} . \tag{16}
\end{equation*}
$$

We know from Theorem 2 that

$$
\lim _{n \rightarrow \infty} g_{n+1, t} / g_{n, t}=\lambda_{u} \quad \text { and } \quad \lim _{n \rightarrow \infty} g_{n-r, t} / g_{n, t}=1 / \lambda_{u}^{r}
$$

so that (16) reduces to

$$
\begin{equation*}
\lambda_{u}=1+\frac{1}{\lambda_{u}^{r}}+\lim _{n \rightarrow \infty} \frac{g_{n, t-1}}{g_{n, t}} . \tag{17}
\end{equation*}
$$

But, λ_{u} is the dominant root of $x^{r+1}-x^{r}-1=0$ so that

This gives by induction

$$
\lim _{n \rightarrow \infty} \frac{g_{n, t-1}}{g_{n, t}}=0
$$

proving Theorem 3.

$$
\lim _{n \rightarrow \infty} \frac{g_{n, t}}{g_{n, s}}=0 \text { for } t<s,
$$

Corollary. If $\left\{u_{n}\right\}$ is the Fibonacci sequence, then

$$
\lim _{n \rightarrow \infty} \frac{g_{n+1, r}}{g_{n, r}}=\frac{1+\sqrt{5}}{2}
$$

and

$$
\lim _{n \rightarrow \infty} \frac{g_{n, t}}{g_{n, s}}=0 \text { for } t<s
$$

We include the unproved theorem:
Theorem 4. If.
then

$$
g_{n+1, r} g_{n-1, r}-g_{n, r}^{2}=w_{n}
$$

$$
\lim _{n \rightarrow \infty} \frac{w_{n+1}}{w_{n}}=\lambda_{u}^{2}
$$

REFERENCES

1. V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers, Houghton-Mifflin, USA.
2. Krishnaswami Alladi, "On Polynomials Generated by Triangular Arrays," The Fibonacci Quarterly, Vol. 14, No. 4 (Dec. 1976), pp. 461-465.
