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Sn an earlier paper by the same authors [1] properties of the compositions of an integer with 1 and 2 were 
discussed. This paper is a sequel to the earlier one and contains results on modes and related concepts. We stress 
once again as before that the word "compositions" refers only to compositions with ones and twos unless 
specially mentioned. 

Definition 1. To every composition of a positive integer N we add an unending string of zeroes at both 
ends. The transition ••• 0 + 1 + - - is a rise while •••+ 1 + 0 + -• is a fall. We also defined in [1] that a one followed 
by a two is rise while it is a fall if they occur in reverse order. We also define — 0 + 1 + — + 1 + 2 as a rise and 
. . -2+1 + - + 1 + 0 + -- as a fall. 

Definition 2, A composition of a positive integer N is called "unimaximal" if there is exactly one rise 
and one fall. In other words it is unimaximal if there is no 1 occurring between two 2's. (All the 2's are bunched 
together.) Let M (N) denote the number of unimaximal (unimax in short) compositions of N. 

Definition 3. A composition of a positive integer is called "uniminimal" if there is no 2 occurring be-
tween two 1's. (All the Ts are bunched together.) Let m^fN) denote the number of uniminimal (unimin in 
short) compositions of N. 

We shall now investigate some of the properties of m (N) and M (N) and make an asymptotic estimate of 
m1(N)/M1(N). 

Theorem 1. 
(a) M1(N) = M1(N- 1)+ [N/2] 

(b) m1(N) = m1(N-2) + [N/2] 

(c) MH2N) - 4 ^ i L t i i ± | ^ / L ^ l 

(d) m1(2N) + m1(2N- 1) = ml(2N+1) + m 1(2N - 2), 

where [x] represents the largest integer < x. 

Proof. Lz\Ml(N,1) and M1(N,2) denote the number of unimax compositions ending with 1 and 2, re-
spectively. Clearly M1(N) = M1(N/1) +M1(Nf2). By Definition 2 we see that 

(1) Ml(Nt1) = MUN- 1) 

since the 1 at the end of the compositions counted by M1(N,1) will not affect the bunching of twos. However 
a 2 at the end preserves unimax if and only if it is preceded by another 2 or a complete string of ones only. Thus 

(2) M^NJ) = Ml(N-2,2)+1 

so that decomposing (2) further we arrive at 
M1(2N+1) = N 

and 
(3) M1(2N) = N. 
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Putting (1) and (3) together we get 
(4) M*(N) = MUN-D + INM . 

Now using similar combinatorial arguments form1 with similar notation \oxm1(N,l) and #71(N,2) we see 
(5) m 1(N) = m 1(Nf J) + m 1(Nf2) 
and 
(6) m1Wt2) = m1(N-2) 
while 

ml(Nf1) = m1(N- 7, 1)+1 if N-1 = 0 (mod 2) 
m1(N,1)-= m^N- I 1) if N = 7 (mod 2) 

which gives 
(7) m1(2N) = m1(2N-2) + N 

(8) m1(2n + 1) = m1(2N-1) + N 
or 

From (4) we deduce 
m1(N) = m1(N-2) + [n/2] . 

Ml(2N) = M1(2N+1) + M1(2N-1) 

for 
M1(2N) = M1(2N-l) + N 
M1(2N+1) = M1(2N) + N. 

Finally (7) and (8) together imply 
m1(2N)+m1(2N- 1) = m2(2N+1) + ml(2N-2) 

proving Theorem 1. 
Theorem 2. < 

,im mlM=i 
N-°° MUN) 2 

Proof. Let An denote thenth triangular number 
A _ n(n + 1) 

In general for real x let 

It is not difficult to establish using induction and Theorem 1 that 
(10) m1(2N+V = AN+1 

(11) m1(2N) = m1(2N- 1)+1 

so that (10) and (11) together imply 
(12) m1lN) = AN/2 + 0(1) . 

One can also show similarly that 
(13) M1(2N+1) = AN+i+Au.! 
and 
(14) M1(2N) = Ml<2N+ 1) + M1(2N- 1) = An+1+2AN_1+AN„3 

which give 
(15) M*(N) = 2ANi2 + 0(N) 
for 

N 1 ! ? - &N/AN+1 = 1. 
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Now (12) and (15) together imply 

N im 
M1(N) proving Theorem 2. 

Definition 4. Every rise and a fail determines a maximum. Every fall and a rise determines a minimum. 
Let M(N) and m(N) denote the number of maximums and minimums in the compositions of N, 

Theorem 3. M(N) = M(N - 1) + M(N -2) + FN„2 - 1 
m(N) = m(N- 1) +m(N-2) +FN„2- 1 

m(N) 
N "™ - M(N) I 

Proof. As before split M(N) as 
M(N) = M(N,1) + M(N,2). 

It is clear that the " 1 " at the end of the compositions counted by M(N, 1) does not record a max and so 

M(N,1) = M(N- 1). 

Clearly the " 2 " at the end of the compositions counted by M(N,2) records an extra max if and only if the cor-
responding composition counted by /I/ — 2 ends in a 1 but not f o r /V - 2 = 1 + 1 + ••• / a string of ones. Thus 

M(N,2) = M(N-2) + CN„2(D- 1 
= M(N -2) + Fn_2 - 1 

giving 
(16) M(N) = M(N - 1) + M(N - 2) + FN„2 - 1. 

Proceeding similarly form(l\/) we have 

m(N) = m(N, 1)+m(N,2) and m(N, 1) = m(N - V + CN„i (2) - 1 = m(N -1)+ FN,2 - 7 

while m(N,2) = m(N - 2) giving 
(17) m(N) = m(N-1) + m(N-2) + FN,2- 1. 

It is quite clear from (16) and (17) that m(N) and M(N) are Fibonacci Convolutions so that [see Hoggatt and 
Alladi [ 2 ] ] . 

(18) N 
lim 

m(N) 
0. 

Now pick any composition of N say NQ. Let M(NQ) and m(Nc) denote the number of max and min, respect-
ively in NQ. Since there is a fall between two rises and a rise between two falls we have 

(19) \M(Nc)-m(Nc)\ < 1-

Now from the definition of NQ it is obvious that 

W)\M(N)-m(N) 

by (19). Now if we use (18) we get 

c c 
2 (M(Nc)-m(Nc)) 
c 

< E \M(Nc)-m(Nc)\ 
c 

< CN = FN+1 

I lim ™Ml 
N"™» M(N) 

In other words the number of maximums and the number of minimums are asymptotically equal. 
Let us now find the asymptotic distribution of 1's and 2's in unimax compositions. LetM} (N) and M2(N) 

denote the number of ones and number of twos in the unimax compositions of N. 

Theorem 4. 
Mt (2N +1) = Mi (2N) + M1(2N) + N2, Mt (2N) = Mt(2N - 1) + M1(2N -1) + N(N - 1), 
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Proof. As before, let 

(21) Mt(N) = M1(N,1) + M1(N,2). 

Clearly we have 
Mi(N,7) = Mi(N- 1) + M1(N- 1) 

while 
(22) Mt (N,2) = Mt(N- 2, 2) + (N- 2) 

for the compositions 7 + 1 + 1 — / = N - 2, and 7 + 1 + ••• / + 2 = N are both unimax. Now if we decompose 
(22) further we sum alternate integers,, Then (21) gives the two equations of Theorem 4. 

Theorem 5. M2(2N + 1) = M2(2N)+ N+ (JLzJM 

M2(2N) = M2(2N- 1) + N + -QLiJM 

Proof. By combinatorial arguments similar to Theorem 4 we get 

M2(N) = M2(N,1) + M2(N,2) 

§\\i\n§M2(N,1) = M2(N- 7jand 

M2(N,2) = M2(N-2,2) + M1(N-2,2)+ 1 = N/2 + Mi(N - 2, 2) + M1(N -4, 2)+ ••• 

on further decomposition. We also know from (3) that 

M1(2N+ 1f2) = M1(2N,2) = N 
so th at 

M2(2N + 1) = M2(2N) + W±li f M2(2N) = M2(2N -1)+ lM!tLD 

Theorem 6. ^ ^ 
wx™ooMl(N) 2' 

Proof It is easy to prove that for real x 

(23) fix) = £ N* ~ J 

We know from Theorem (4) that 

(24) Mi(2N+ 1) = M1(2N) + M1(2N) + N2 

(25) M1(2N) = Mi(2N- 1) + M1(2N- 1) + N(N- 7). 

From (4) one can deduce without trouble that 

(26) M1(2N+ 1) = N2 + N + 1 

(27) M1(2N) = N2+1. 

Now substituting (26) and (27) in (24) and (25) and continuing the decomposition using the recursion on 
Theorem 4 we get 

(28) Mt(N)= Z ™2
 + £ m 2

+ 0(N2) - f f f V + Q(N2)~ Uff 
m<N/2 m<N/2 J X Z / J V Z / 

using (23). If we adopt the same decomposition procedure to the two equations in Theorem (5) we get by virtue 
of 

(29) M2(N) = Y, m2 + 0(N2) = 1Jf\ + Q(N2). 
m<N/2 JX ; 

Now (28) and (29) together imply 
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lim MM = L 
A T ^ ~ Mt(N) 2 

establishing Theorem 6, 
We now state theorems analogous to (4) and (5) and (6) for the uniminimal compositions. 

Theorem 7, N-I 
mt(N) - m1(N-2)+Y, ml(n,1) +[N/2] 

n=l 

m2(N) = m2(N-2) + m1(N -2)+ [N/2] . 

Proof. With the usual notation m^N,!) and m^(N,2) we find 

mt(N) = m1(N/1) + m1(N/2) 

mi(Ni2) = mi(N-2) 

since the " 2 " at the end of the compositions counted by m(N,2) will not affect the counting of m 
ones. However for mi(N,1) we find 

rntfN,!) = m^N- 1, 1) + ml(N- 1, 1)+1 

if N-1 = 0 (mod 2) 

= mt(N- 1, 1) + ml(N- 1, 1) 

if N-1 = 1 (mod 2) 

so putting these together we get 
N-1 

m i(N) = mi(N-2)+Y, ml(n,1) +[N/2] , 
n=l 

With similar use of notation for/7? 2 we get 

m2(N) = m2(N,1) + m2(N,2) 

giving 

while 

so that these give 

Theorem 8. 

m2(N12) = m2(N-2) + m1(N-2) 

m2(N,1) = m2(N- 1,1)+1 if N-1 = 0 (mod 2) 

= m2(N- 1) if N-1 = 1 (mod 2) 

m2(N) = m2(N-2) + m1(N-2)+ [N/2] . 

m2(N) _ / 
Ar m — — . = — . 
N-+°o mi(N) 2 

Proof. We know from Theorem 7 that 
N-1 

(29) mt(N) = m1(N-2)+J^ ml(n,1) + [n/2] . 
n=l 

Now from Theorem 1 we deduce that 
mHn,1) = [n/2] 

so that 
N-1 N~l N-1 A 

(30) J ] mtfal) = £ [n/2] = £ [n/2] + 0(N - 1) = ^ + 0(N - 1). 
n=l n=l n=l 

If we continue to decompose mi (N - 2) in (29) and use (30) we will finally get 
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(31) mi(N) =j^bl + AJ±1 + *M +1 +0(N
2) ~ *fl + *f* 

We also know from Theorem 7 that 
(32) m2(N) = m2(N- 2) + m1(N-2) + [N/2] 

It is easy to establish from Theorem 1 that 
ml(2N+1) = AN+1, m1(2N + 2) = m1(2N+l)+ 1 

giving 
(33) mHN) = AN/2 + 0(A/) ~ AN/2 . 
Now decomposing rri2(N - 2) in (32) further and using (33) we get 

m2(N) _- | ^ , I + ^d + \ + m2) = lfa±2 + A^-4 + \ + 0(N2j (34) 

' 2 +^+~\+0<N2) 

since A- ~ y implies Ax ~ Ayr Now if we compare (34) and (31) we get 

lim fRiM = L 
N^°° mt(N) 2 

proving Theorem 8. 
We now shift our attention to compositions called "Zeckendorf compositions." A composition of N in which 

no two consecutive ones appear is called a Zeckendorf composition (1) and if no two consecutive twos appear 
it is called a Zeckendorf composition (2). We denote them in short asz^ and z2 compositions respectively. Note 
that in azj composition there should be a 2 between ones while in a unimin there should not similarly^ is 
the opposite of unimax. Now denote by 

Z(N) = the number of Z2 compositions of N 
z(N) = the number of Z^ compositions of N. 

Theorem 9. Z(N) = Z(N - 1) + Z(N - 31 z(N) = z(N -2)+ z(N - 3). 

lim *M =0 

Proof. As usual partition 
z(N) = z(N,1) = z(N,2) 

c\ear\yz(Nr2)=z(N-2),)iti\\\e , , 
u. z(N,1) = z(N-1,2) = z(N-3) 

this proves , , , 
z(N) = z(N-2)+z(N-3l 

93m Z(N) = Z(Nt 1) +Z(N,2) and Z(N,1) = Z(N - 1) 
while 

Z(N,2) = Z(N -2,1)= Z(N - 3) 
giving 
, L u L Z(N) = Z(N-1)+Z(N-3). 
It can be shown that 

lim m±li = a 
N ™ - Z(N) a 

and 
N -» °° z(N) 

where a and fi are the dominant roots of the auxiliary polynomials x - x - 1 = 0 and x3 - x - 1 = 0 (a> (3). 
See Hoggatt and Alladi [2]. This implies that there exist constants ca, c$ > 0 so that Z(N) > Caa

N 

and 
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z(N) 

N ^ o o 

cN 

< Cpp 

z(N) 
Z(N) 

jv'lm~ 

N 

= 0. 

zW 
CN 

and 

giving 

Corollary. On similar lines 

N l i m ±111/ = j j m ^m = o. 

NOTE. Given a partition of N in terms of 1 and 2, if we rearrange the summands so as to get the maximum 
number of max we getaZ^ composition. If we rearrange to get the maximum number of min we get aZ^ com-
position. Roughly a Zeckendorf composition is either a maximax or a maximin composition. 
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A TOPOLOGICAL PROOF OF A WELL KNOWN FACT 
ABOUT FIBONACCI NUMBERS 

ETHAN D. BOLKER 
Bryn Mawr College, Bryn Mawr, Pennsylvania 

Theorem. Letp be a prime. Then there is a sequence [mA of positive integers such that 
P = 1-p . = 7 - Fm.+ 1 = 0 (mod/7-0. 
'rrij — ' rmj~l rrij-t-i r ' 

The proof depends on the following lemma. 

Lemma. LetG be a topological group whose completion (in the natural uniformity) is compact. Le t#e G. 
Then the sequence #, g , g3, ••• has a subsequence which converges to 1. 

Proof. The sequence of powers of g has an accumulation point h = Jim g 1 in the compact completion 6 

of G. Let/?7y = nj+i - nj. Then g ] -> 7 in G and hence in G. 
To prove the theorem we shall apply the lemma to 

( ; ; ) 
in the group G of 2x2 integer matrices of determinant ±1 topologized /7-adically. That is, for every integern 
write n =pkm, (p,m)= 1 and set \\n\\p =p~k. Then for / I , B e G let 

d{A,B) = max { \ A { j - B{j\\p : i, j = 12} 

G equipped with the metric d satisfies the hypotheses of the lemma. 
It is easy to check inductively that 

«wi _ I 'yn + l 'm 
y ~ \ F F A 

\ rm rm~ 1 

[Continued on p. 280.] 


