POLYNOMIALS ASSOCIATED WITH CHEBYSHEV POLYNOMIALS OF THE FIRST KIND

A. F. HORADAM
University of Y ork, Y ork, England, and University of New England, Armidale, Australia

BACKGROUND

Jaiswal [1] investigated certain polynomials $p_{n}(x)$ related to Chebyshev polynomials of the second kind $U_{n}(x)$ for which

$$
\begin{equation*}
U_{n+1}(x)=2 x U_{n}(x)-U_{n-1}(x), \quad U_{0}(x)=1, \quad U_{1}(x)=2 x \tag{1}
\end{equation*}
$$

with

$$
U_{n}(\cos \theta)=\frac{\sin (n+1) \theta}{\sin \theta} .
$$

In this article, similar properties are derived for the corresponding polynomials $q_{n}(x)$ related to Chebyshev polynomials of the first kind $T_{n}(x)$ for which

$$
\begin{equation*}
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x), \quad T_{0}(x)=2, \quad T_{1}(x)=2 x \tag{2}
\end{equation*}
$$

with

$$
T_{n}(\cos \theta)=2 \cos n \theta
$$

The first few Chebyshev polynomials of the first kind are
(3)

$$
\begin{aligned}
& T_{0}(x)=2 \\
& T_{1}(x)=2 x \\
& T_{2}(x)=4 x^{2}-2 \\
& T_{3}(x)=8 x^{3}-6 x \\
& T_{4}(x)=16 x^{4}-16 x^{2}+2 \\
& T_{5}(x)=32 x^{5}-40 x^{3}+10 x \\
& T_{6}(x)=64 x^{6}-96 x^{4}+36 x^{2}-2 \\
& T_{7}(x)=128 x^{7}-224 x^{5}+112 x^{3}-14 x \\
& T_{8}(x)=256 x^{8}-512 x^{6}+320 x^{4}-64 x^{2}+2 \\
& \text { THE ASSOCIATED POLYNOMIALS }
\end{aligned}
$$

Now take the sums along the rising diagonals on the right-hand side of (3). We obtain polynomials $q_{n}(x)$ which bear a close relationship to the Fibonacci numbers F_{n}. It is natural to define $q_{0}(x)=0$.

From (3), the first few polynomials $q_{n}(x)$ are
(4) $\left\{\begin{array}{l}q_{1}(x)=2, \quad q_{2}(x)=2 x, \quad q_{3}(x)=4 x^{2}, \quad q_{4}(x)=8 x^{3}-2, \quad q_{5}(x)=16 x^{4}-6 x, \\ q_{6}(x)=32 x^{5}-16 x^{2}, \quad q_{7}(x)=64 x^{6}-40 x^{3}+2, \quad q_{8}(x)=128 x^{7}-96 x^{4}+10 x, \\ q_{9}(x)=256 x^{8}-224 x^{5}+36 x^{2}, \quad q_{10}(x)=512 x^{9}-512 x^{6}+112 x^{3}-2 .\end{array}\right.$

Observe in (4) the recurrence relation

$$
\begin{equation*}
q_{n+3}(x)=2 x q_{n+2}(x)-q_{n}(x) \quad(n \geqslant 0) \tag{5}
\end{equation*}
$$

which is (not unexpectedly) similar to Jaiswal's recurrence relation.

SOME PROPERTIES OF THE POLYNOMIALS

The $q_{n}(x)$ are seen to be connected with Jaiswal's $p_{n}(x)$ by the formula
(6)

$$
q_{n}(x)=p_{n}(x)-p_{n-3}(x) \quad\left(n \geqslant 3, p_{0}(x)=0\right)
$$

leading to
(7)

$$
\sum_{n=3}^{\infty} q_{n}(x) t^{n}=\sum_{n=3}^{\infty} p_{n}(x) t^{n}-\sum_{n=3}^{\infty} p_{n-3}(x) t^{n} \quad(n \geqslant 3)
$$

i.e., by Jaiswal's generating function, to the generating function
(8)

$$
\sum_{n=3}^{\infty} q_{n}(x) t^{n}=\left(t-t^{4}\right)\left(1-2 x t+t^{3}\right)^{-1}
$$

For convenience, write the left-hand side of (8) as
(9)

$$
Q(x, t)=\sum_{n=3}^{\infty} q_{n}(x) t^{n}
$$

from which we have (abbreviating $Q(x, t)$ as Q)

$$
\begin{equation*}
\frac{\partial Q}{\partial t}=\frac{1-6 t^{3}-t^{6}+6 x t^{4}}{\left(1-2 x t+t^{3}\right)^{2}}, \quad \frac{\partial Q}{\partial x}=\frac{t-t^{4}}{\left(1-2 x t+t^{3}\right)^{2}} \tag{10}
\end{equation*}
$$

Manipulation with (10) leads to the partial differential equation

$$
\begin{equation*}
2 t \frac{\partial Q}{\partial t}-\left(2 x-3 t^{2}\right) \frac{\partial Q}{\partial x}-8 Q+6 G_{1}=0 \tag{11}
\end{equation*}
$$

where, adjusting Jaiswal's notation slightly, we write

$$
G_{1}(x, t)=\sum_{n=3}^{\infty} p_{n}(x) t^{n}=\frac{t}{1-2 x t+t^{3}}
$$

But from (9),

$$
\begin{equation*}
\frac{\partial Q}{\partial t}=\sum_{n=3}^{\infty} n q_{n}(x) t^{n-1}, \quad \frac{\partial Q}{\partial x}=\sum_{n=3}^{\infty} q_{n}^{\prime}(x) t^{n} . \tag{12}
\end{equation*}
$$

Substitution in (11) yields
(13)

$$
2 x q_{n+2}^{\prime}(x)-3 q_{n}^{\prime}(x)=2(n-2) q_{n+2}(x)+6 p_{n+2}(x) \quad(n \geqslant 0)
$$

Comparing coefficients of t^{n+1} in (8), we obtain

$$
q_{n+1}(x)=(2 x)^{n}-\binom{n-2}{1}(2 x)^{n-3}+\binom{n-4}{2}(2 x)^{n-6}-\cdots-\left\{(2 x)^{n-3}-\binom{n-5}{1}(2 x)^{n-6}+\cdots\right\}
$$

that is,

$$
\left.\left.q_{n+1}(x)=\sum_{r=0}^{\left[\frac{n}{3}\right.}\right] \begin{array}{c}
n-2 r \tag{14}\\
r
\end{array}\right)(-1)^{r}(2 x)^{n-3 r} \sum_{r=0}^{\left[\frac{n-3}{3}\right]}\binom{n-3-2 r}{r}(-1)^{r}(2 x)^{n-3-3 r}
$$

SPECIAL CASE $x=1$
Putting $x=1$ in (4) and writing $Q_{n} \equiv q_{n}(1)$, we obtain the sequence
(15)

$$
\begin{aligned}
\left.Q_{n}: \begin{array}{rrrrrrrrrrrr}
n=0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \ldots \\
0 & 2 & 2 & 4 & 6 & 10 & 16 & 26 & 42 & 68 & 110 & \cdots \\
& \equiv 2(0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & 55 \\
\ldots
\end{array}\right)
\end{aligned}
$$

Clearly
(16)

$$
a_{n}=2 F_{n} \quad(n \geqslant 0),
$$

where F_{n} is the $n^{\text {th }}$ Fibonacci number.

It might be remarked that when $x=1$, Eq. (5) becomes

$$
Q_{n+3}=2 Q_{n+2}-Q_{n} \quad(n \geqslant 0)
$$

which is a characteristic feature of the Fibonacci sequence of numbers.
[Setting $x=1$ in $\left\{U_{n}\right\}$ and $\left\{T_{n}\right\}$ gives, on using (1) and (2) (or (3)), the sequences $1,2,3,4,5,6, \cdots$ and $]$
$[2,2,2,2,2,2, \cdots$, respectively.
Further, one may notice that
(17)

$$
P_{n}=Q_{n}+F_{n-1}-1,
$$

where P_{n} are the numbers obtained from Jaiswal's polynomials $p_{n}(x)$ by putting $x=1$, i.e., $P_{n} \equiv p_{n}(1)$.

$$
\left(P_{n+1}=P_{n+1}+P_{n}-1, \quad P_{0}=1, \quad P_{1}=1 .\right)
$$

Finally, $x=1$ in (14) yields, with (16),

$$
\begin{equation*}
F_{n+1}=1 / 2\left\{\sum_{r=0}^{[n / 3]}\binom{n-2 r}{r}(-1)^{r} 2^{n-3 r}-\sum_{r=0}^{\left[\frac{n-3}{3}\right]}\binom{n-3-2 r}{r}(-1)^{r} 2^{n-3-3 r}\right\} . \tag{18}
\end{equation*}
$$

Our results should be compared with the corresponding results produced by Jaiswal. The generating function (8), and the properties which flow from it such as (11) and (13), are slightly less simple than we might have wished. However, the Fibonacci property (16) could hardly be simpler. What we lose on the swings we gain on the roundabouts!

REFERENCE

1. D. V. Jaiswal, "On Polynomials Related to Tchebichef Polynomials of the Second Kind," The Fibonacci Quarterly, Vol. 12, No. 3 (Oct. 1974), pp. 263-265.

* *

[Continued from p. 232.]

Proposed by Guy A. R. Guillot, Montreal, Quebec, Canada.
Show that
(a)

$$
\frac{\pi}{2}=\sum_{n=1}^{\infty} \tan ^{-1} \frac{2 F_{2 n+1}}{F_{2 n} F_{2 n+2}}
$$

(b)

$$
\frac{\pi}{2}=\sum_{n=1}^{\infty} \cos ^{-1} \frac{F_{2 n} F_{2 n+2}}{F_{2 n} F_{2 n+2}+2}
$$

(c)

$$
\frac{\pi}{2}=\sum_{n=1}^{\infty} \sin ^{-1} \frac{2 F_{2 n+1}}{F_{2 n} F_{2 n+2}+2}
$$

Proposed by Guy A. R. Guillot, Montreal, Quebec, Canada.
Find a function A_{k} in terms of k alone for the following expression.

$$
F_{n}=\sum_{k=1}^{F_{n}} p_{k}-\sum_{k=1}^{F_{n}} A_{k}
$$

where p_{k} denotes the $k^{\text {th }}$ prime and F_{n} denotes the $n^{\text {th }}$ Fibonacci number.

