ZERO-ONE SEQUENCES AND STIRLING NUMBERS OF THE FIRST KIND

C. J. PARK

San Diego State University, San Diego, California 92182

This is a dual note to the paper [1]. Let $x_{1}, x_{2}, \cdots, x_{n}$ denote a sequence of zeros and ones of length n. Define a polynomial of degree $(n-m) \geqslant 0$ as follows

$$
\begin{equation*}
a_{m+1, n+1}(d)=\sum\left(x_{1}-d\right)^{1-x_{1}}\left(x_{2}-(d+1)\right)^{1-x_{2}} \cdots\left(x_{n}-(d+n-1)\right)^{1-x_{n}} \tag{1}
\end{equation*}
$$

with

$$
a_{1,1}(d)=1 \quad \text { and } \quad a_{m+1, n+1}(d)=0, \quad n<m
$$

where the summation is over $x_{1}, x_{2}, \cdots, x_{n}$ such that

$$
\sum_{i=1}^{n} x_{i}=m .
$$

Summing over x_{n} we have the following recurrence relation

$$
\begin{gather*}
a_{m+1, n+1}(d)=-(d+n-1) a_{m+1, n}(d)+a_{m, n}(d), \tag{2}\\
a_{0,0}(d)=1 \quad \text { and } \quad a_{0 . n}(d)=0, \quad n>0 .
\end{gather*}
$$

Summing over x_{1}, we have the following recurrence relation
(3)

$$
\begin{gathered}
a_{m+1, n+1}(d)=-d a_{m+1, n}(d+1)+a_{m, n}(d+1) \\
\quad a_{0,0}(d)=1 \quad \text { and } \quad a_{0, n}(d)=0, \quad n>0 .
\end{gathered}
$$

The following theorem establishes a relationship between the polynomials defined in (1) and Stirling numbers of the first kind; see Riordan [2, pp. 32-34].
Theorem 1. $a_{m, n}(1)$ defined in (1) are Stirling numbers of the first kind.
Proof. From (1) $a_{1,1}(d)=1$ and from (2)
(4)

$$
a_{m+1, n+1}(1)=-n a_{m+1, n}(1)+a_{m, n},
$$

which is the recurrence relation for Stirling numbers of the first kind, see Riordan [2, p. 33]. Thus Theorem 1 is proved.
Using (2), (3) and (4) the following Corollary can be shown.
Corollary. (a)

$$
a_{m+1, n+1}(0)=a_{m, n}(1)
$$

(b) $\quad a_{m+1, n+1}(1)=-a_{m+1, n}(2)+a_{m, n}$ (2)
(c) $\quad a_{m, n}(2)-a_{m+1, n}(2)=-n a_{m+1, n}(1)+a_{m, n}(1)$.

The orem 2. Let $\beta_{m+1, n+1}(d)$ be a polynomial of degree $(n-m) \geqslant 0$ given by Park [1]. Then
(5) $\quad \sum a_{m+1, k+1}(d) \beta_{k+1, n+1}(d)=\delta_{m+1, n+1}$ with $\delta_{m, n}$ the Kronecker delta. $\delta_{m, n}=1, \delta_{m, n}=0, m \neq n$, and summed over all values of k for which $a_{m+1, k+1}(d)$ and $\beta_{k+1, n+1}(d)$ are nonzero.

Proof. It can be verified that the polynomial defined in (1) has a generating function
(6) $\quad(t-d)^{(n)}=\sum_{m=0}^{n} t^{m} a_{m+1, n+1}(d)$, where $(t-d)^{(n)}=(t-d)(t-d-1) \cdots(t-d-n+1)$.

The generating function of $\beta_{m+1, n+1}(d)$ can be written

$$
\begin{equation*}
t^{n}=\sum_{m=0}^{n}(t-d)^{(m)} \beta_{m+1, n+1}(d) \tag{7}
\end{equation*}
$$

Using (6) and (7), (5) follows. This completes the proof of Theorem 2.
EXAMPLE: For $n=3$, let

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
a_{1,1}(d) & 0 & 0 & 0 \\
a_{1,2}(d) & a_{2,2}(d) & 0 & 0 \\
a_{1,3}(d) & a_{2,3}(d) & a_{3,3}(d) & 0 \\
a_{1,4}(d) & a_{2,4}(d) & a_{3,4}(d) & a_{4,4}(d)
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-d & 1 & 0 & 0 \\
d(d+1) & -(2 d+1) & 1 & 0 \\
-d(d+1)(d+2) & \left(3 d^{2}+6 d+2\right) & -3(d+1) & 1
\end{array}\right] \\
B=\left[\begin{array}{llll}
\beta_{1,1}(d) & 0 & 0 & 0 \\
\beta_{1,2}(d) & \beta_{2,2}(d) & 0 & 0 \\
\beta_{1,3}(d) & \beta_{2,3}(d) & \beta_{3,3}(d) & 0 \\
\beta_{1,4}(d) & \beta_{2,4}(d) & \beta_{3,4}(d) & \beta_{4,4}(d)
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
d & 1 & 0 & 0 \\
d^{2} & (2 d+1) & 1 & 0 \\
d^{3} & \left(3 d^{2}+3 d+1\right) & 3(d+1) & 1
\end{array}\right]
\end{gathered}
$$

Then $A \cdot B=\boldsymbol{I}$.

ACKNOWLEDGEMENT

I wish to thank Professor V. C. Harris for his comments on my original manuscript.

RE FERENCES

1. C. J. Park, "Zero-One Sequences and Stirling Numbers of the Second Kind," The Fibonacci Quarterly, Vol. 15, No. 3 (Oct. 1977), pp.205-206.
2. John Riordan, An Introduction to Combinatorial Analysis, Wiley, New York, 1958.
$\star * * *$
PROBLEMS
GUY A. R. GUILLOT
Montreal, Quebec, Canada
Proposed by Guy A. R. Guillot, Montreal, Quebec, Canada.
Prove that

$$
\sum_{n=1}^{\infty} \tan ^{-1} \frac{1}{n^{2}+n+1}=\sum_{n=1}^{\infty} \tan ^{-1} \frac{1}{F_{2 n+1}}
$$

Proposed by Guy A. R. Guillot, Montreal, Quebec, Canada.
Show that
(a)

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2} F_{n+2}}>\frac{\pi^{2}}{12}-\frac{(\log 2)^{2}}{2}+\frac{1}{48}
$$

(b)
[Continued on p. 257.]

$$
\sum_{n=0}^{\infty} \frac{1}{F_{n+2}}\left(\tan \frac{\pi}{2^{n+2}}\right)>\frac{4}{\pi}+0.0166
$$

