In a forthcoming paper on the topic (viz. [4]), an alternative (and more rigorous) approach is presented for the general solution of the problem proposed in this paper, under appropriate restrictions of analyticity for functions f and g.

REFERENCES

1. H. W. Gould, Combinatorial Identities, Morgantown, West Virginia, 1972.
2. H. W. Gould, "Some Combinatorial Identities of Bruckman-A Systematic Treatment with Relation to the Older Literature," The Fibonacci Quarterly, Vol. 10, No. 5, pp. 15-16.
3. Handbook of Mathematical Functions, National Bureau of Standards, Washington, D.C., 1970.
4. Paul S. Bruckman, "Generalization of a Problem of Gould and its Solution by a Contour Integral," The Fibonacci Quarterly, unpublished to date.

为

[Continued from p. 268.]

$$
\left.T_{i-3}=\sum_{m=0}^{\left[\frac{i-3}{2}\right]} \sum_{r=0}\left(\begin{array}{c}
i-m \\
m+2 \\
m+3
\end{array}\right)\binom{m+r}{r}=\frac{\left[\frac{i+1}{2}\right]}{\sum_{m=2}} \sum_{r=1}^{\frac{i-1}{3}}\right]\left[\begin{array}{c}
i-m-2 r-1 \\
m+r-1
\end{array}\right)\binom{m+r-1}{r-1} .
$$

Now,

$$
T_{i}=T_{i-1}+T_{i-2}+T_{i-3}=\sum_{m=0}^{[i / 2]} \sum_{r=0}^{[i / 3]}\binom{i-m-2 r}{m+r}\binom{m+r}{r}
$$

(from lemma) which is what we required.
Fairly clearly when we are in the plane $r=0$, we have the ordinary Fibonacci numbers. Further investigations suggest themselves along the lines of Hoggatt [3] and Horner [4].

REFERENCES

1. M. Feinberg, "Fibonacci-Tribonacci," The Fibonacci Quarterly, Vol. 1, No. 3 (October 1963), pp. 71-74.
2. M. Feinberg, "New Slants," The Fibonacci Quarterly, Vol. 2, No. 2 (April 1964), pp. 223-227.
3. V.E. Hoggatt, Jr., "A New Angle on Pascal's Triangle," The Fibonacci Quarterly, Vol. 6, No. 2 (April 1968), pp. 221-234.
4. W. W. Horner, "Fibonacci and Pascal," The Fibonacci Quarterly, Vol. 2, No. 2 (April 1964), p. 228.
