ON POWERS OF THE GOLDEN RATIO*

WILLIAM D. SPEARS

Route 2, Box 250, Gulf Breeze, Florida 32561

and T. F. HIGGINBOTHAM

Industrial Engineering, Auburn University, Auburn, Alabama 36830

The golden ratio \underline{G} is peculiar in that it is the number \underline{X} such that $\underline{X}^2 = \underline{X} + 1$. This characteristic permits deduction of properties of \underline{G}^n not unlike those of Fibonacci numbers \underline{F} . Also, interesting relations of \underline{F} numbers are derivable from properties of \underline{G}^n . Some of these properties and relations are given below.

First, a given \underline{n}^{th} power of \underline{G} is the sum of G^{n-1} and G^{n-2} for

(1)
$$G^{n-1} + G^{n-2} = G^{n-2}(G+1) = G^n$$

Furthermore, for <u>n</u> a positive integer, $G^n = F_n G + F_{n-1}$ which implies that G^n approaches an integer as <u>n</u> increases. For proof, determine that $G^1 = A G + G$

$$G^{2} = IG + 0$$

 $G^{2} = G + 1 = IG + 1$
 $G^{3} = G(G + 1) = 2G + 1$

and from (1), $G^4 = (1+2)G + (1+1)$, $G^5 = (3+2)G + (2+1)$, etc.

The coefficient of <u>G</u> on the right for each successive power of <u>G</u> is the sum of the two preceding F_{n-1} and F_{n-2} coefficients, and the number added to the multiple of <u>G</u> is the sum of F_{n-2} and F_{n-3} . Hence,

(2)

$$G^{n} = F_{n}G + F_{n-1}.$$

$$G^{n} \rightarrow F_{n+1} + F_{n-1}.$$

Hence, G^n approaches an integer as <u>n</u> increases, and thus approximates all properties of $F_{n+1} + F_{n-1}$. No restrictions were placed on <u>n</u> in (1), so the equation holds for n < 0. For example, given <u>n</u> = 0,

$$G^{n-1} + G^{n-2} = \frac{1}{G} + \frac{1}{G^2} = \frac{G+1}{G^2} = 1 = G^0$$

Hence, sums of reciprocals of F numbers assume F properties as $F_{n+1}/F_n \rightarrow G$. Generally, let $F_n G$ represent F_{n+1} , and $F_n G^2$ represent F_{n+2} . Then

(3)
$$\frac{1}{F_{n+1}} + \frac{1}{F_{n+2}} \to \frac{1}{F_n G} + \frac{1}{F_n G^2} = \frac{1}{F_n} \left(\frac{G+1}{G^2}\right) = \frac{1}{F_n}$$

Equation (3) is a special case of a much more general interpretation of (1), for positive or negative fractional exponents may be used. To reveal the general application to \underline{F} numbers, derive from the general equation for F_n ,

$$F_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}} = \frac{G^n - \frac{1}{(-G)^n}}{\sqrt{5}}$$

that $F_n\sqrt{5} \to G^n$ as <u>n</u> increases. Hence, for any positive integers <u>n</u> and <u>m</u>,

*We wish to thank Mary Ellen Deese for her help in discerning patterns in computer printouts.

$$G^{\overline{m}} = G^{\overline{m}^{-1}} + G^{\overline{m}^{-2}}$$

$${}^{n}J^{\frac{1}{m}} = (G^{n-m})^{\frac{1}{m}} + (G^{n-2m})^{\frac{1}{m}}$$

 $F_n^{\frac{1}{m}} \rightarrow F_{n-m}^{\frac{1}{m}} + F_{n-2m}^{\frac{1}{m}}$

(G

п

(4) (5)

To illustrate Eq. (4), let n = 1 and m = 3.

Cubing both sides gives

$$G = G^{-\frac{6}{3}} + 3G^{-\frac{9}{3}} + 3G^{-\frac{12}{3}} + G^{-\frac{15}{3}} = G^{-5}(G^{6}) = G.$$

 $G^{\frac{1}{3}} = G^{-\frac{1}{3}} + G^{-\frac{5}{3}}$

The proximity of the relation in (5) even for n small can be illustrated by letting n = 10 and m = 2, or

$$F_{10}^{1/2} \to F_8^{1/2} + F_6^{1/2}$$

$$\sqrt{55} = 7.416 \to \sqrt{21} + \sqrt{8} = 7.411.$$

Equation (4) adapts readily to -1/m, for

$$(G^n)^{-\frac{1}{m}} = (G^{n+m})^{-\frac{1}{m}} + (G^{n+2m})^{-\frac{1}{m}}$$

and from (5),

$$F_n^{-\frac{1}{m}} \to F_{n+m}^{-\frac{1}{m}} + F_{n+2m}^{-\frac{1}{m}}$$

Again, letting n = 10 and m = 2,

$$F_{10}^{-\frac{1}{2}} = .134839$$
 and $F_{12}^{-\frac{1}{2}} + F_{14}^{-\frac{1}{2}} = .134835.$

An additional insight regarding <u>F</u> relations derives from (2) and the fact that $F_n\sqrt{5} \rightarrow G^n$, for

$$F_n \sqrt{5} \rightarrow G^n \rightarrow F_{n+1} + F_{n-1}$$
$$F_n \sqrt{5} \rightarrow F_{n+1} + F_{n-1} .$$

Hence, $F_n\sqrt{5}$ approaches an integer as <u>n</u> increases.

These relations of <u>F</u> and powers of <u>G</u>, especially those involving negative exponents, permit greater perspective for <u>F</u> numbers. For example, Vorob'ev [1] states that the condition $U_n = U_{n-1} + U_{n-2}$ does not define all terms in the *F* sequence because not every term has two preceding it. Specifically, 1,1,2 ... does not have two terms before 1,1. Such is not true of G^n where $-\infty < n < \infty$. F_n properties approach those of G^n as $n \to \pm \infty$, with maximum discrepancy at $\underline{n} = 0$. \underline{G} is usually viewed as the limit of F_{n+1}/F_n as $\underline{n} \to \infty$; perhaps the more mystical concept of a guiding essence for harmonic variations of F_n is in order. G^n brings F_n to taw. The distortion in F_n relations relative to G^n is never great so long as <u>n</u> is a positive or negative integer. And G^n properties surmount even $\underline{n} = 0$.

A last look at G^n will be made in terms of logarithms of <u>F</u> numbers to the base <u>G</u>. Because $F_n \to G^n / \sqrt{5}$,

$$\log_G F_n \to n - \frac{1}{2} \log_G 5 = n - 1.6722759 \dots = (n-2) + .3277240$$

Therefore,
(8) $F_n \to G^{n-2}G^{.3277240}\dots$

(8)

Hence, $\log_G F_n - \log_G F_{n-1}$ harmonically approaches unity, and rapidly.

REFERENCE

1. N. N. Vorob'ev, Fibonacci Numbers, Blaisdell Publishing Co., New York, 1961, p. 5.

Oct. 1977