ON POWERS OF THE GOLDEN RATIO*

WILLIAM D. SPEARS
Route 2, Box 250, Gulf Breeze, Florida 32561
and
T. F. HIGGINBOTH AM

Industrial Engineering, Auburn University, Auburn, Alabama 36830
The golden ratio \underline{G} is peculiar in that it is the number \underline{X} such that $\underline{X}^{2}=\underline{X}+1$. This characteristic permits deduction of properties of \underline{G}^{n} not unlike those of Fibonacci numbers $\underline{\underline{F}}$. Also, interesting relations of \underline{F} numbers are derivable from properties of \underline{G}^{n}. Some of these properties and relations are given below.
First, a given $\underline{n}^{\text {th }}$ power of \underline{G} is the sum of G^{n-1} and G^{n-2} for

$$
\begin{equation*}
G^{n-1}+G^{n-2}=G^{n-2}(G+1)=G^{n} . \tag{1}
\end{equation*}
$$

Furthermore, for \underline{n} a positive integer, $G^{n}=F_{n} G+F_{n-1}$ which implies that G^{n} approaches an integer as \underline{n} increases. For proof, determine that

$$
\begin{gathered}
G^{1}=1 G+0 \\
G^{2}=G+1=1 G+1 \\
G^{3}=G(G+1)=2 G+1
\end{gathered}
$$

and from (1), $G^{4}=(1+2) G+(1+1), G^{5}=(3+2) G+(2+1)$, etc.
The coefficient of \underline{G} on the right for each successive power of \underline{G} is the sum of the two preceding F_{n-1} and F_{n-2} coefficients, and the number added to the multiple of \underline{G} is the sum of F_{n-2} and F_{n-3}. Hence,

$$
G^{n}=F_{n} G+F_{n-1} .
$$

As \underline{n} increases, $F_{n} G \rightarrow F_{n+1}$, so
(2)

$$
G^{n} \rightarrow F_{n+1}+F_{n-1}
$$

Hence, G^{n} approaches an integer as $\underline{\eta}$ incraases, and thus approximates all properties of $F_{n+1}+F_{n-1}$. No restrictions were placed on \underline{n} in (1), so the equation holds for $n \leqslant 0$. For example, given $\underline{n}=0$,

$$
G^{n-1}+G^{n-2}=\frac{1}{G}+\frac{1}{G^{2}}=\frac{G+1}{G^{2}}=1=G^{0} .
$$

Hence, sums of reciprocals of F numbers assume F properties as $F_{n+1} / F_{n} \rightarrow G$. Generally, let $F_{n} G$ represent F_{n+1}, and $F_{n} G^{2}$ represent F_{n+2}. Then

$$
\begin{equation*}
\frac{1}{F_{n+1}}+\frac{1}{F_{n+2}} \rightarrow \frac{1}{F_{n} G}+\frac{1}{F_{n} G^{2}}=\frac{1}{F_{n}}\left(\frac{G+1}{G^{2}}\right)=\frac{1}{F_{n}} \tag{3}
\end{equation*}
$$

Equation (3) is a special case of a much more general interpretation of (1), for positive or negative fractional exponents may be used. To reveal the general application to \underline{F} numbers, derive from the general equation for F_{n},

$$
F_{n}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}=\frac{G^{n}-\frac{1}{(-G)^{n}}}{\sqrt{5}}
$$

that $F_{n} \sqrt{5} \rightarrow G^{n}$ as $\underline{\eta}$ increases. Hence, for any positive integers \underline{n} and \underline{m},
*We wish to thank Mary Ellen Deese for her help in discerning patterns in computer printouts.
(4)

$$
\begin{align*}
G^{\frac{n}{m}}=G^{\frac{n}{m}-1}+G^{\frac{n}{m}-2} \\
\left(G^{n}\right)^{\frac{1}{m}}=\left(G^{n-m}\right)^{\frac{1}{m}}+\left(G^{n-2 m}\right)^{\frac{1}{m}} \\
F_{n}^{\frac{1}{m}} \rightarrow F_{n-m}^{\frac{1}{m}}+F_{n-2 m}^{\frac{1}{m}} \tag{5}
\end{align*}
$$

To illustrate Eq. (4), let $n=1$ and $m=3$.

$$
G^{\frac{1}{3}}=G^{-\frac{1}{3}}+G^{-\frac{5}{3}}
$$

Cubing both sides gives

$$
G=G^{-\frac{6}{3}}+3 G^{-\frac{9}{3}}+3 G^{-\frac{12}{3}}+G^{-\frac{15}{3}}=G^{-5}\left(G^{6}\right)=G
$$

The proximity of the relation in (5) even for \underline{n} small can be illustrated by letting $\underline{n}=10$ and $\underline{m}=2$, or

$$
F_{10}^{1 / 2} \rightarrow F_{8}^{1 / 2}+F_{6}^{1 / 2}
$$

$$
\sqrt{55}=7.416 \rightarrow \sqrt{21}+\sqrt{8}=7.411
$$

Equation (4) adapts readily to $-1 / m$, for

$$
\left(G^{n}\right)^{-\frac{1}{m}}=\left(G^{n+m}\right)^{-\frac{1}{m}}+\left(G^{n+2 m}\right)^{-\frac{1}{m}}
$$

and from (5),

$$
F_{n}^{-\frac{1}{m}} \rightarrow F_{n+m}^{-\frac{1}{m}}+F_{n+2 m}^{-\frac{1}{m}}
$$

Again, letting $n=10$ and $m=2$,

$$
F_{10}^{-1 / 2}=.134839 \quad \text { and } \quad F_{12}^{-1 / 2}+F_{14}^{-1 / 2}=.134835 .
$$

An additional insight regarding \underline{F} relations derives from (2) and the fact that $F_{n} \sqrt{5} \rightarrow G^{n}$, for

$$
\begin{gathered}
F_{n} \sqrt{5} \rightarrow G^{n} \rightarrow F_{n+1}+F_{n-1} \\
F_{n} \sqrt{5} \rightarrow F_{n+1}+F_{n-1} .
\end{gathered}
$$

Hence, $F_{n} \sqrt{5}$ approaches an integer as \underline{n} increases.
These relations of \underline{F} and powers of \underline{G}, especially those involving negative exponents, permit greater perspective for \underline{E} numbers. For example, Vorob'ev [1] states that the condition $U_{n}=U_{n-1}+U_{n-2}$ does not define all terms in the \underline{F} sequence because not every term has two preceding it. Specifically, $1,1,2 \ldots$ does not have two terms before $\overline{1}, 1$. Such is not true of G^{n} where $-\infty<n<\infty$. F_{n} properties approach those of G^{n} as $n \rightarrow \pm \infty$, with maximum discrepancy at $\underline{n}=0 . \underline{G}$ is usually viewed as the limit of F_{n+1} / F_{n} as $\underline{n} \rightarrow \infty$; perhaps the more mystical concept of a guiding essence for harmonic variations of F_{n} is in order. G^{n} brings F_{n} to taw. The distortion in F_{n} relations relative to G^{n} is never great so long as \underline{n} is a positive or negative integer. And G^{n} properties surmount even $\underline{n}=0$.
A last look at G^{n} will be made in terms of logarithms of \underline{F} numbers to the base \underline{G}. Because $F_{n} \rightarrow G^{n} / \sqrt{5}$,

$$
\log _{G} F_{n} \rightarrow n-1 / 2 \log _{G} 5=n-1.6722759 \ldots=(n-2)+.3277240 \ldots
$$

Therefore,
(8)

$$
F_{n} \rightarrow G^{n-2} G^{3277240 \cdots}
$$

Hence, $\log _{G} F_{n}-\log _{G} F_{n-1}$ harmonically approaches unity, and rapidly.
REFERENCE

1. N. N. Vorob'ev, Fibonacci Numbers, Blaisdell Publishing Co., New York, 1961, p. 5.
