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1. INTRODUCTION 

Waclaw Sierpinski [2, p. 6 ] , [3, p. 94] raised the following question: 
SIERPINSKI'S PROBLEM: Are there an infinite number of primitive Pythagorean triples with both the 
hypotenuse and the odd leg equal to a prime? 
This questionis equivalent to asking for an infinite number of solutions, in primes, to the Diophantine equa-

tion # 2 = 2p - 1. Other than this simple transformation it seems that no progress has been made toward a solu-
tion to Sierpinski's problem. 

As a result of his work on Sierpinski's Problem, LA. Barnett raised the following questions: 
QUESTION A: Are there an infinite number of primitive pythagorean triples for which the sum of the legs is 

a prime? 
QUESTION B: Are there an infinite number of primitive pythagorean triples for which the absolute value of 

the difference of the legs is a prime? 
QUESTION C: Are there an infinite number of primitive pythagorean triples for which both the sum of the 

legs and the absolute value of the difference of the legs are prime? 
For a complete discussion and characterization of primitive pythagorean triangles with either the sum or the 

difference of legs equal to a prime consult [4 ] . The more interesting aspects of [4] are summarized in the 
following. 

Every prime divisor of either the sum or the difference of the legs of a primitive pythagorean triangle is con-
gruent to ±1 modulo 8. Conversely, if p ̂  ± 1 (mod 8) is prime, there is a unique primitive pythagorean triangle 
with the sum of the legs equal to p. However, there are two disjoint infinite sequences of primitive pythagorean 
triangles, with the difference of the legs equal to p, for every triangle in these sequences. Moreover, every tri-
angle with the difference of the legs equal to p,is in one of these sequences. _ 

In Section 2 of this paper, we define "a is a semi-associate of /3" fora j3eZf^ /2 j and present some elemen-
tary properties of this concept. Thesj? properties are used in Section 3 to show the equivalence of Question C to 
four questions about primes in Z[yJ2]. _ _ 

In this paper we use the integral domain Z[sj2] = {a + by/2 \a, b G Z } , where Z denotes the usual set of 
integers. A detailed discussion of this integral domain is available [ 1 , pp. 231-244], but some of the basic 
facts and some notations are presented in this section. _ 

I will follow the usual custom of referring to elements of Z[^J2] as integers and elements of Z as rational 
integers. _ 

If e= 1 + s/2, thenjhe set of units of Zfjljfc precisely theset {±en \n e / } . 
The primes \nZfsj2j are all associates of: 

(1) s/2 
(2) All rational primes of the form 8k ±3. 

These are called primes of the second degree. 
(3) All conjugate factors of rational primes of the form 8k ±1 

These are called primes of the first degree. _ 
The following notation and terminology will be used. If a = a + b\J2, then 
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a = a- b^/2 is called the conjugate of a 
N(a) = aa is called the norm of a. 
R(a) = a is called the rational part of a. 
1(a) = b is^called the irrational part of a. _ 
e= 1 + \J2 is called the fundamental unit \nZf^/2 ]. 

€~l = _ 7 + ^J2 is called the inverse of e. 

Each of the properties listed in Lemma 1 is an elementary consequence of the definitions of the symbols in-
volved but are useful in later sections. Proofs can easily be supplied by the reader. 

Lemma 1. If a and j3are integers, then 

al= a/3 
N(aP) = N(a)N($), a + a = 2R(a), a-a = 2^/21(a) 

R(a&) = R(a)R((5) + 21(a) W), Ka(5) = I(a)R((3) + R(a)KP) 

R(a~$) = R(a)R($)-2I(a)W), I(a~p) = R@)I(a)- R(a)I((3) 

R(a2) = R2(a) + 2l2(a), I(a2) = 2R(a)I(a) 

R(ae) = R(a) +21(a), I(ae) = R(a) + I(a) 

R(CL€~ 1) = 21(a)- R(a), Mae*1) = R(a)-1(a) 

N(a) = 2l(a)I(ae'1) - R(a)R(a€1)/ N(a) = R(a)I(ae) - R(ae)I(a). 

The following lemma summarizes all of the information needed about Pell-type equations. 

Lemma 2. \\p is a rational prime of the form 8k ±1, the equation x - 2y2 = p has exactly one solution 
x = a,y = b such that the following two equivalent statements are true: 

(i) yjp<a< sJ2p 

(ii) 0 < b < yjp/2. 

The equation x -2y = p has infinitely many solutions, all of which are obtained from (a + bsj2)e \ where 
t is any rational integer and x = a, y = b is any solution of x - 2y2 = p. 

The unique solution which satisfies (i) and (ii) will be called the fundamental solution. 

2. SEMI-ASSOCIATES IN Z[,J2] 

Theorem 1. If a and ]3 are integers in Z[>J2]f then the following are equivalent. 

(1) Some associate, call it 7, of j3 has the same irrational part as a and ye has the same rational part as a. 
(2) There is a rational integer n such that either: 

(a) Wen) = 1(a) and R((Sen+1) = R(a) 
or 

(b) I(-(3en) = 1(a) and R(-(5en+1) =R(a). 

(3) jS is an associate of [R(a) - 21(a)] + I(a)>j2. 

(4) j3 is an associate of a - 21(a). 

(5) ±N($) = N(a) +41(a)[1(a)-R(a)]. 

(6) ±N(P) = N(a)-4l(a)I(ae'1). 

(7) N(a)iNQ) = 41(a)[R(a) - 1(a)] . 

(8) N(a)±N($) = 4l(a)I(ae-1). 

Proof. It is clear from the characterization of associates in Z[^/2] and from Lemma 1 that: (1) <=> (2), 
(3) ~ (4), (5) <=> (6) ~ (7) <=> (8). To complete the proof we show (1) ~ (3) and (4) <=> (5). 
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To see that (3) =* (1), let y = [R(a) - 21(a)] + I(a)sj2 and observe that I(y) = 1(a) and R(ye) = R(a). 
To see that (1) => (3K assume j3 is an associate of y with I(y) = 1(a), and R(ye)= R(a). Then y must be of 

the form 7 =r + I(a)*j2 and hence _ 
ye= [r + 2I(a)] + [I(a) + r]sJ2. 

Now R(ye) = R(a) implies r= R(a) - 21(a). Hence 

y = [R(a>-21(a)]+I(a)s]2. 
To prove (4) <=• (5), note fi is an associate of a- 21(a) if and only if 

±N(P) = N[a- 21(a)] = fR(a) - 21(a)] 2 - 2l2(a) = R2(a) - 4l(a)R(a) + 4I2(a)~ 212(a) 
= N(a) + 4l(a)[I(a)- R(a)J . 

Definition 1. If a and |3are integers \nZ[yJ2] which satisfy any one, and hence all, of the conditions of 
Theorem 1, then a is called a semi-associate of (5. 

It is clear that the relation "is a semi-associate of" is not an equivalence relation. The next sequence of 
theorems characterizes those elements for which the relation is either reflexive, symmetric, or transitive. 

Theorem 2. Let a be an integer in Zfy/2]. a is a semi-associate of itself if and only if 

R(a)I(a)R(ae~1)I(ae'1) = 0. 
Proof, The theorem follows easily from the fact that a is a semi-associate of itself i f and only if 

4l(a)I(ae'1) = N(a) + N(a) = 4l(a)I(ae'1) - 2R(a)R(ae'1) 
or 

4l(a)I(ae'1) = N(a)-N(a) = 0. 
Corollary. The primes in Z[\J2] which are semi-associates of themselves are ±yj2, ±e\]2, ±p, ±ep, where 

pe[p \p is a rational prime of the form 8k ± 3}. 

Proof That each of the primes listed is a semi-associate of itself follows directly from the theorem. To 
see that these are the only possibilities, consider the four cases: 

(i) R(a) = 0 

(ii) 1(a) = 0 
(iii) R(a) - 1(a) = Kae'1) = 0. 
(iv) 21(a) - R(a) = R(ae~1) = 0. 

Theorem 3. Two integers a and 0 are semi-associates of each other if and only if one of the following 
four pairs of conditions is true: 

(i) KalKae-1) = KPJWe'1), R(a)R(ae1) = -R^Rf^e'1) 
(ii) Katttae-1) = -U^We'1), R(a)R(ae1) = Rf^Rf^e'1) 
(iii) 2l(a)I(ae~1) = -R(P)R(?>e~i)f R(a)R(ae1) = 2W)We~1) 
(iv) 2l(a)I(ae'1) = RtfjRipe-1), R(a)R(ae1) = ^KPJKfie'1) . 

Proof If a is a semi-associate of (5 and simultaneously /3 is a semi-associate of a, then by Theorem 1, part 8, 

N(a) ± N(P) = 4l(a)I(ae'1) and N(P)± N(a) = 4l(p)I(^e'1). 

This leads to the following four cases: 

Case.1. N(a) + N{fl) = 4l(a)l(ae1 )f N(a) + N($) = 4l($)I($e1)'. 
Case 2. N(a) - N@) = 4l(a)I(ae'1), N($) - N(a) = 4l((5)We'1). 
Case 3. N(a) + N(p) = 4fta)I(ae~1), Ntf). - N(a) = 4W)I((5e'1). 
Case 4. N(a) - N(fi) = 4l(a)I(ae~1), Nffi) + N(a) = 4l(P)We~1). 
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In Case 1 it is clear that 
KaJHae'1) = WWe'1) 

and then by Lemma 1, 
MtalKae-1) = N(a) + N(f3) = -R(a)R(ae'1) +2l(a)I(ae'1)- R(P)R(Pe'1) + 2l(P)I(P€'1) 

= -RialRfae'1)- Rf^R^e'1)+4l(a)I(ae'1). 
It now follows that 

RfaWfae'1) = -RfplR^e'1). 
Conversely if 

KalKae-1) = K^We'1) and RiajRfae'1) = -Rl^R^e'1) 

then by Lemma 1, 
N(a) + N((3) = -R(a)R(ae-1) + 2l(a)I(ae-1)-R((3)R(Pe~1) + 2W)We~'1) = 4l(a)I(ae1) 

= 4W)I((3e-1). 

Thus by Theorem 1, a and /3 are semi-associates of each other. In Case 2, it is clear that 

KaUfae'1) = -IfpUfPe'1) 
and as in Case 1, Lemma 1 implies that 

R(a)R(ae'1) = Rt^R^e'1). 

The converse again follows from Lemma 1. In Case 3, addition of the two equalities yields 

Nft) = 2l(a)I(ae~1J+2l((3)We-1) 
and then by Lemma 1, 

-R((3)R(Pe-1) + 2l((])We-1) = N(fi) = 2l(a)I(a€'1) + 2I(P)We'1). 
Thus 

2l(a)I(ae'1) = -RWlRt^1). 
On the other hand if the second equality is subtracted from the first and Lemma 1 is used we get 

-R(a)R(ae-1) + 2l(a)I(ae'1) = Nfa) = 2l(a)I(ae'1) - 21(^)1(^6'1) . 
Thus 

R(a)R(ae'1) = 2l(&)I(&e1)t 

Conversely if both conditions in (iii) are true, then direct computation, using Lemma 1, shows 

Nfa) + N((3) = 4l(a)Ifae'1) and N((3) - Nfa) = 4lfj5)We'1) 
and hence a and 0 are semi-associates of each other. In Case 4, addition of the two equalities and Lemma 1 
yields 

RtaJRtae'1) = ^WWe'1). 

Subtraction of the first equality from the second and Lemma 1 yields 
2l(a)I(ae~1) = R^fR^e'1). 

The converse is proved by direct computation as indicated in Case 3. This completes the proof. 
Integers a and |3 which are semi-associates of each other may also be characterized in terms of norms and 

rational parts of integers. 

Theorem 4. Two integers a and fi are semi-associates of each other if and only if one of the following 
four pairs of conditions is true: 
(i) Nfa) = Rf^e-1), N@) = Rfah'1) 

(ii) Nfa) = -Rffe1), N(0) = -Rfah'1) 

(iii) Nfa) = -Rffe1), N(&) = Rfa2^1) 

(iv) Nfa) = Rffe1), N(Q) = -R(a2e~1). 
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Proof. If the conditions in part (i) of Theorem 3 are true, then from Lemma 1, 

R(a2e'1) = R(a)R(ae1) + 2I(a)I(ae1), 
and hence, 

N(&) = 2I(P)We'1)- Rim^"1) = R(a)R(ae-1)+2l(a)I(ae~1) - R(a2e1). 
Similarly 

N(a) = Rl^e'1). 
Conversely, if 

N(p) = R(a2e1) and N(a) = Rf^e'1), 
then 

2l((3)We~1)- R(P)R(0€'1) = N(P) = R(a2e'1) = 2l(a)I(ae1) + R(a)R(ae1), 
and 

2l(a)I(ae~1)- R(a)R(ae~j) = N(a) = R(P2e'1) = 2l(P)I(Pe'1) +R(P)R(Pe'1).-

Addition of these two equalities yields 
l(a)l(ae1) = KPiKPe'1) 

and subtraction yields 
R(a)R(ae1) = -R(P)R(pe'1). 

Thus condition (i) of Theorem 3 is true and a and p are semi-associates of each other. Similar arguments show 
that conditions (ii), (iii), and (iv) of this theorem are equivalent to conditions (ii), (iii), and (iv) of Theorem 3 
and the proof is complete. 

The property of transitivity for the relation "is a semi-associate of" is closely related to reflexivity* This re-
lation is expressed in Theorem 5. 

Theorem 5, If a, P, and 7 are integers in ZfyJ2] such that a is a semi-associate of P and P is a semi-
associate of 7, then a is a semi-associate of 7 if and only if p is a semi-associate of itself. 

Proof. If a is a semi-associate of P and P is a semi-associate of 7 and itself, then p and 7 are associates and 
hence a is a semi-associate of 7. Conversely if j8 is a semi-associate of 7 and a is a semi-associate of both p and 7, 
then p and 7 are associates and thus p is an associate of p - 2I(j5) because 7 is. Hence (3 is a semi-associate of 
itself. 

The following results will be particularly useful in the next section. 

Lemma 3. R(p2e2k+1) = N[pek + 2l(pek)] . 
Proof R(p2e2k+1) = R2(pek) + 4R(Pek)I(Pek) + 2l(pek) 

= [R((3ek} + 2Wek)]2-2l2(Pek) = N[pek + 2l(Pek)] . 
Theorem 6. If a is a semi-associate of p, then 

N(a) = R(p2e2k+1) 
for some rational integer k. 

Proof Since a is a semi-associate of p, it follows from Theorem 1, that there is a rational integer k such 
that exactly one of the following cases is true: 

Case 1. I(pek) = 1(a) and Rffiek) = R(a)-21(a). 
Case 2. I(-(5ek) = 1(a) and R(-(3ek) = R(a) - 21(a). 
In Case 1 we have 

R(p2e2k+1) = R(p2e2k) + 2l(p2e2k) = R2(Pek) +2I2(pek) + 4R(Pek)I(pek) 
= [R(a) - 21(a)] 2 + 2l2(a) + 41(a)fR(a) - 21(a)] 
= R2(a)-2l2(a) = N(a). 

In Case 2 note that 
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I(-ri) = -I(rj) and -R(r]) = R(-r\) 

for any 17 (EZ[^J2] and then 
H(p2€2k+1) = R(p2€2k) + 2l(p2e2k) = R2(pek)+2l2(j5ek)+4R(p€k)I(l5ek) 

= R2(-$ek) + 2l2(-(3ek) + 4R(-$ek)I(-$ek) 
= [R(a) - 21(a)] 2 + 212 (a) + 41(a)[R(a) - 21(a)] 
= R2(a)~2I2(a) = N(a) . 

Theorem 6 gives a necessary condition for one integer to be a semi-associate of another integer. This condi-
tion does not seem to be sufficient, but a partial result in this direction is given in Theorem 7. 

Theorem!. If a is a prime and 
N(a) = R((32e2k+1) 

for some rational integer kf then some associate of a or some associate of a is a semi-associate of |3. 

Proof. If 
N(a) = R($2e2k+1), 

then by Lemma 3 
N(a) = /V[(Sek + 2l(f3eh)] 

so that either a or a is an associate of 

Pek+2I((3ek). 
Consider the case where a is an associate of 

(3ek + 2l((3ek). 
Then there is a rational integer t such that 

±aef = $ek + 2l((3ek). 
Hence 

j3efe = (3ek+2Wek)-2l((3ek) = ±aet-2l(^€k) = ±aet - 2l(±aet). 
Thus j3 is an associate of 

±aet-2l(±aet) 
and hence ±aef is a semi-associate of |3. The remaining case follows in a similar fashion. 

3. EQUIVALENT FORMS OF QUESTION C 

The term "generators" of a primitive pythagorean triple will mean the quantities m and n in the familiar 
formulae: 

x = 2mn, y = m2 - n2, z = m2 + n2 , 

where m and n are of opposite parity, (m,n) = 1, and m > n . 

Theorem 8. Let/? and q be rational primes of the form 8k ± 7 (not necessarily of the same form). Let 
u = a, v = b be the fundamental solution of u2 - 2v^_ = p, and let a = a + b^]2. Letu = c, v = d be the funda-
mental solution of u2 - 2v2 = q and let |3 = c + d*j2. If (xfy,z) is a primitive pythagorean triangle such that 
x + y = p and \x - y | = q, then a is a semi-associate of /3 0r |3. 

Proof. Let/77 and n be the generators of (x,yfz). Since 

p = x + y = (m + n)2 - 2n2 > (2n)2 - 2n2 = 2n2 

it follows that u = m + n and v = n is the fundamental solution of u2 - 2v2 = p. Hencea^/7? + n and b = n. 
Now note that 

N($) = q = \y-x\ = \(m-n)2 -2n2\ = \Nf(m - n) + nJ2]'\ = \N [a-21(a)] \. 
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Since j3 is prime it follows that ]8 or 0 is an associate of a - 21(a) and hence a is a semi-associate of j3or/3. 

Theorem 9. Let a and 0 be primes of the first degree in Z[sJ2]. Let/7 and q be the rational primes 
such that N(a) = p and N($) = q. If a is a semi-associate of j3, then there is a primitive pythagorean triangle 
(x,y,z) such that x + y = p and \x - y\= q. 

Proof. Let a = a + b\J-2 and (3 = c + ds]2. Let m = a - b and n = b. Then m and n generate a primitive 
Pythagorean triangle (x,y,z) such that 

x + y = (m+n)2-2n2 = a2 - 2b2 = N(a) = p. 
Since _ __ 

a = a + bsj2 = (m+n) + n^/2 

is a semi-associate of p= c + d^j2, there is a rational integer no such that the conditions in one of the following 
cases is true: _ _ 
Case 1. $<P* = r + n>J2 and $en°+1 = (m + n) +s^/2 , 

where rand s are rational integers. 

Case2. (S(-en°) = r + n^J2 and $(-en«+1) = (m + n) + Syj2, 

where r and s are rational integers. 
In Case 1 we have 

(m + n) + s^/2 = Peno+1 = (r + nJ2)€ = (r + 2n) + (r + n)sj2 . 

Comparing rational parts yields r= m - n. Thus 

/3en° = (m-n) + nJ2. 

Now we have 

q = N($) = ±N((3en°) = ±Nf(m - n) + nJ2] = ±[(m - n)2 - 2n2] = ±f(m + n)2 - 2m2] = ±(y - x). 

Hence, in this case, \x- y \ = q. In Case 2 we have 

(m + n) + SyJ2 =.(r + nyJ2)e= (r + 2n)+ (r + n)yj2 , 

and as before we conclude q = \x -y |. 
Combining the results of Theorems 1, 8, and 9 yields the following theorem. 

Theorem 10. The following questions are each equivalent to Question C. 

QUESTION D: Are there infinitely many pairs of primes of the first degree \nZf^/2] such that one mem-
ber of the pair is a semi-associate of the other member of the pair? _ 

QUESTION E: Are there infinitely many pairs a and a- 21(a), of primes of the first degree \n_Z[^/2]? 
QUESTION F: Are there infinitely many pairs (a,(3) of primes of the first degree in Z[s]2] such that 

either 
N(a) + N($) = maJKae'1) or N(a) - N(f$) = 41(a)Ifae^1) ? 

Combining the results of Theorems 6, 7, and 10 yields the final theorem. 
Theorem 11. Questions C, D, Ef and F are all equivalent to: 

QUESTION G: Are there infinitely many pairs (a,$) of primes of the first degree in Z[^J2] such that 

N(a) = R(fe2k+1) 
for some rational integer k, depending on a and j3? 
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