MORE REDUCED AMICABLE PAIRS

WALTER E. BECK and RUDOLPH M. NAJAR
University of Wisconson, Whitew ater, Wisconsin 53190

INTRODUCTION

Perfect, amicable and sociable numbers are the fixed points of the arithmetic function L and its iterates. $L(n)=\sigma(n)-n$, where σ is the sum of divisors function. Recently, there has been interest in fixed points of functions $L_{+} L_{-}, L_{ \pm}(n)=L(n) \pm 1$, and their iterates. Jerrard and Temperley [1] studied the fixed points of L_{+}and L_{-}. Lal and Forbes [2] conducted a computer search for fixed points of $\left(L_{-}\right)^{2}$. For earlier references to L_{-}, see the bibliography in [2].
We conducted computer searches for fixed points n of iterates of L_{-}and L_{+}. Fixed points occur in sets where the number of elements in the set equals the power of L_{-}or L_{+}in question.
In §1, we describe the results of L. The previous work of Lal and Forbes [2] discovered the fixed points of $\left(L_{-}\right)^{2}$ with one element of each pair $\leqslant 10^{5}$. We extend the results to $n \leqslant 10^{6}$. No other types of fixed points were discovered
The results for L_{+}are described in $\S 2$. Again only pairs were found.

1. THE FUNCTION L_{-}

Lal and Forbes [2] discovered nine pairs of fixed points of $\left(L_{-}\right)^{2}$, where at least one element was less than, or equal to, 10^{5}. In fact, for all pairs, both numbers were less than 10^{5}.
If n is a fixed point of $\left(L_{-}\right)^{k}$: i.e. $\left(L_{-}\right)^{k}(n)=n$, for $k \geqslant 1$, then $\left(L_{-}\right)(n),\left(L_{-}\right)^{2}(n), \cdots,\left(L_{-}\right)^{k-1}(n)$ are also fixed points of $\left(L_{-}\right)^{k}$. Thus fixed points of iterates of L_{-}occur in sets of cardinality k. For at least one integer n in such a set, $L_{-}(n)>n$. Thus it suffices to search among n with $L_{-}(n)>n$.
A computer search was conducted using an IBM 370 , Model 135. All natural numbers $n, 0<n \leqslant 10^{6}, L_{-}(n)$ $>n$ were examined. The iterates $\left(L_{-}\right)^{k}(n), 1 \leqslant k \leqslant 50$, were calculated. Calculation of iterates stopped if
or

$$
\begin{equation*}
\left(L_{-}\right)^{m}(n)=0, \quad 1 \leqslant m \leqslant 50 ; \tag{a}
\end{equation*}
$$

$\left(L_{-}\right)^{m+k}(n)=\left(L_{-}\right)^{m}(n), \quad 1 \leqslant k \leqslant 4$.
The printout was to list all iterates calculated in case (b) and for the case where $\left(L_{-}\right)^{50}(n)>0$. The program
 new pairs of reduced amicable numbers. There were no sets of fixed points of cardinality other than 2 . Of the twelve numbers, only one exceeded 10^{6}. The pairs are listed in Table 1 with the prime factorization.

	Table 1 L_		
(a)	186615	=	3(2)5.11.13.29
	206504	=	2(3)83.311
(b)	196664	$=$	2(3)13.31.61
	219975	=	3.5(2)7.419
(c)	199760	=	2(4)5.11-227
	309135	=	3.5-37.557
(d)	266000	=	2(4)5(3)7.19
	507759	=	3.7.24179
(e)	312620	=	2(2)5-7(2)11-29
	549219	=	3.11(2)17.89
(f)	587460	=	2(2)3.5.9791
	1057595		5.7.11.41.67

2. THE FUNCTION L_{+}

Jerrard and Temperley [2] ran a search for fixed points of L_{+}. Every power of 2 is a fixed point. But they discovered no others. They did not examine fixed points of iterates of L_{+}.
We call natural numbers augmented perfect numbers, augmented amicable numbers and auqmented sociable numbers as they are fixed points of L_{+}of $\left(L_{+}\right)^{2}$ or of $\left(L_{+}\right)^{k}, k>2$. The names are suggested by the name reduced amicable numbers for fixed points of $\left(L_{-}\right)^{2}$ as used in [2].
A computer search for fixed points was run in the range, $0<n \leqslant 10^{6}$. No augmented perfect numbers, no augmented sociable numbers were found. Eleven pairs of augmented amicable numbers were found. They are listed in Table 2. Two pairs have both elements over 10^{6}. They arose from iterating L_{+}on 532512,844740 and 869176.

	tABLE 2 L_{+}		
(a)	6160	=	2(4)5.7.11
	11697	=	3.7.557
(b)	12220	=	2(2)5.13.47
	16005	=	3.5.11.97
(c)	23500	=	2(2)5(3)47
	28917	=	3(5)7.17
(d)	68908	=	2(2)7-23-107
	76245	=	3.5.13.17.23
(e)	249424	=	2(4)7.17.131
	339825	=	3.5(2)23.197
(f)	425500	=	2(2)5(3)23.37
	570405	=	3.5.11.3457
(g)	434784	=	2(5)3.7.647
	871585	=	5.11.13.23.53
(h)	649990	=	2.5.11.19.311
	697851	=	3(2)7.11-19.53
(i)	660825	=	3(3)5(2)11-89
	678376	=	2(3)19-4463
(j)	1017856	=	2(F)7.71
	1340865	=	3(2)5.83.359
(k)	1077336	=	2(3)3(2)13.1151
	2067625	=	5(3)7.17.139

1. R. P. Jerrard and N. Temperley, "Almost Perfect Numbers," Math. Mag., 46 (1973), pp. 84-87.
2. M. Lal and A. Forbes, "A Note on Chowla's Function," Math. Comp., 25 (1971), pp. 923-925. MR 456737.
